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¢ Gan a misspecified g learn key properties™ of p?

*mean, median, correlations, covariances, quantiles,
“credible” samples...

® Guarantees for VI when p and @ exhibit certain symmetries

® cven symmetry — g recovers the mean

o clliptical symmetry — q recovers the correlation matrix

V! theory allows for severe misspecifications in @
¥ g has even and elliptical symmetry if it is location-scale
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Condition

log p is concave on R and strictly concave on
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® When does p have the studied symmetries?

In Bayesian setting:
p) =z | x.pn) x 7(z) m(lx;.y | 2)

Sparse data regime: prior 7(z) dominates.

Large data regime: likelihood z(x,. | z) dominates.

A x=(1,2,20 = 1000
C(auchy ) X Cch%y3) Cauchy Cauchy

g (x| 2 =) /x\ /\ /\ /\

*Bernsteln-von Mise: as N — o0, 7(z | x;.y) becomes Gaussian
(which has even and elliptical symmetry)
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Why the next paper will be more interesting

/ A more nuanced theory: error bound based on violation of symmetry
Follow example of previous work on pre-asymptotic

regimes of VI [e.g. Katsevich and Rigollet’24]

® An actionable diagnostic:
Find measures of asymmetry we can use to bound error 1n practice.

& Conjecture:

For each symmetry, there exists a statistics that VI recovers.



