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In Bayesian setting: 
                           p(z) = π(z ∣ x1:N) ∝ π(z) π(x1:N ∣ z)

Sparse data regime: prior  dominates.π(z)

Large data regime: likelihood  dominates.π(x1:N ∣ z)

log π(x ∣ z = ν)

ν
*Bernstein-von Mise: as ,  becomes Gaussian 
(which has even and elliptical symmetry) 

N → ∞ π(z ∣ x1:N)
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🖌 A more nuanced theory: error bound based on violation of  symmetry
Follow example of  previous work on pre-asymptotic 
regimes of  VI [e.g. Katsevich and Rigollet’24]

🔎 An actionable diagnostic:
Find measures of  asymmetry we can use to bound error in practice.

💭 Conjecture:
For each symmetry, there exists a statistics that VI recovers.


