Matching symmetries with variational inference

Charles Margossian (Flatiron Institute)

Matching symmetries with variational inference

Variational Inference in location-scale families. CM and Lawrence Saul AISTATS 2025 (best paper award)

Charles Margossian (Flatiron Institute)

$$q^{\star} = \operatorname{argmin}_{q \in \mathcal{Q}} \ \operatorname{KL}(q \,|\, |p)$$

$$q^{\star} = \operatorname{argmin}_{q \in \mathcal{Q}} \ \operatorname{KL}(q \,|\, | \, p)$$

$$\mathbf{KL}(q \mid | p) = \int [\log q(z) - \log p(z)] q(z) dz.$$

$$q^{\star} = \operatorname{argmin}_{q \in \mathcal{Q}} \ \operatorname{KL}(q \,|\, | \, p)$$

$$\mathbf{KL}(q \mid | p) = \int [\log q(z) - \log p(z)]q(z)dz.$$

In practice $p \notin \mathcal{Q}$, meaning $q^* \neq p$

$$q^{\star} = \operatorname{argmin}_{q \in \mathcal{Q}} \ \mathsf{KL}(q \,|\, | \, p)$$

$$\mathbf{KL}(q \mid | p) = \int [\log q(z) - \log p(z)]q(z)dz.$$

In practice $p \notin Q$, meaning $q^* \neq p$...so what?

? Can a misspecified q learn key properties* of p?

? Can a misspecified q learn key properties* of p?

*mean, median, correlations, covariances, quantiles, "credible" samples...

- ? Can a misspecified q learn key properties* of p?
 - *mean, median, correlations, covariances, quantiles, "credible" samples...
- \bigcirc Guarantees for VI when p and \bigcirc exhibit certain symmetries

- ? Can a misspecified q learn key properties* of p?
 - *mean, median, correlations, covariances, quantiles, "credible" samples...
- \bigcirc Guarantees for VI when p and \bigcirc exhibit certain symmetries
- even symmetry $\rightarrow q$ recovers the mean

- ? Can a misspecified q learn key properties* of p?
 - *mean, median, correlations, covariances, quantiles, "credible" samples...
- \bigcirc Guarantees for VI when p and \bigcirc exhibit certain symmetries
- even symmetry $\rightarrow q$ recovers the mean
- *elliptical symmetry* $\rightarrow q$ recovers the correlation matrix

- Can a misspecified q learn key properties* of p?
 *mean median correlations covariances quantiles
 - *mean, median, correlations, covariances, quantiles, "credible" samples...
- \bigcirc Guarantees for VI when p and \bigcirc exhibit certain symmetries
- even symmetry $\rightarrow q$ recovers the mean
- *elliptical symmetry* \rightarrow q recovers the correlation matrix

 $\overline{\mathbf{V}}$ theory allows for severe misspecifications in \mathcal{Q}

- ? Can a misspecified q learn key properties* of p?
 - *mean, median, correlations, covariances, quantiles, "credible" samples...
- \bigcirc Guarantees for VI when p and \bigcirc exhibit certain symmetries
- even symmetry $\rightarrow q$ recovers the mean
- *elliptical symmetry* $\rightarrow q$ recovers the correlation matrix

- $\overline{\mathbf{V}}$ theory allows for severe misspecifications in \mathcal{Q}
- ∇q has even and elliptical symmetry if it is location-scale

- ? Can a misspecified q learn key properties* of p? *mean, median, correlations, covariances, quantiles,
 - *mean, median, correlations, covariances, quantiles, "credible" samples...
- \bigcirc Guarantees for VI when p and \bigcirc exhibit certain symmetries
- even symmetry $\rightarrow q$ recovers the mean
- *elliptical symmetry* $\rightarrow q$ recovers the correlation matrix

- $\overline{\mathbf{V}}$ theory allows for severe misspecifications in \mathcal{Q}
- ∇q has even and elliptical symmetry if it is location-scale
- When does p have the studied symmetries?

p(z) is even symmetric about a point μ if

$$p(\mu - z) = p(\mu + z).$$

p(z) is even symmetric about a point μ if

$$p(\mu - z) = p(\mu + z).$$

p(z) is even symmetric about a point μ if

$$p(\mu - z) = p(\mu + z).$$

Theorem

• Let p(z) be even symmetric.

p(z) is even symmetric about a point μ if

$$p(\mu - z) = p(\mu + z).$$

- Let p(z) be even symmetric.
- Let \mathcal{Q} be a family with location parameter and an even-symmetric based distribution q_0 .

p(z) is even symmetric about a point μ if

$$p(\mu - z) = p(\mu + z).$$

- Let p(z) be even symmetric.
- Let Q be a family with location parameter and an even-symmetric based distribution q_0 .
- Then, under some regularity conditions, minimizing $\mathbf{KL}(q | | p)$, yields $\nu^* = \mu$.

p(z) is even symmetric about a point μ if

$$p(\mu - z) = p(\mu + z).$$

- Let p(z) be even symmetric.
- Let Q be a family with location parameter and an even-symmetric based distribution q_0 .
- Then, under some regularity conditions, minimizing $\mathbf{KL}(q | | p)$, yields $\nu^* = \mu$.

^{*}If the mean exists, it gets recovered.

p(z) is even symmetric about a point μ if

$$p(\mu - z) = p(\mu + z).$$

- Let p(z) be even symmetric.
- Let Q be a family with location parameter and an even-symmetric based distribution q_0 .
- Then, under some regularity conditions, minimizing $\mathbf{KL}(q||p)$, yields $\nu^* = \mu$.
- *If the mean exists, it gets recovered.

p(z) is even symmetric about a point μ if

$$p(\mu - z) = p(\mu + z).$$

Theorem

- Let p(z) be even symmetric.
- Let Q be a family with location parameter and an even-symmetric based distribution q_0 .
- Then, under some regularity conditions, minimizing $\mathbf{KL}(q | | p)$, yields $\nu^* = \mu$.

p = multivariate Student-t

q = factorized Gaussian

Condition

 $\log p$ is concave on \mathbb{R}^d and strictly concave on some open set of \mathbb{R}^d .

Condition

 $\log p$ is concave on \mathbb{R}^d and strictly concave on some open set of \mathbb{R}^d .

 \Rightarrow **KL** $(q_{\nu}||p)$ is strictly convex in ν .

Condition

 $\log p$ is concave on \mathbb{R}^d and strictly concave on some open set of \mathbb{R}^d .

 \Rightarrow **KL** $(q_{\nu} | | p)$ is strictly convex in ν .

Without condition, $\nu^* = \mu$ is still a stationary point of $\mathrm{KL}(q \mid p)$.

Condition

 $\log p$ is concave on \mathbb{R}^d and strictly concave on some open set of \mathbb{R}^d .

 \Rightarrow **KL** $(q_{\nu} | | p)$ is strictly convex in ν .

Without condition, $\nu^* = \mu$ is still a stationary point of $\mathrm{KL}(q | | p)$. Example:

$$p(z) = \frac{1}{2} \text{Normal}(-m, 1) + \frac{1}{2} \text{Normal}(m, 1)$$
$$q(z) = \text{Normal}(\nu, 1)$$

Condition

 $\log p$ is concave on \mathbb{R}^d and strictly concave on some open set of \mathbb{R}^d .

 \Rightarrow **KL** $(q_{\nu} | | p)$ is strictly convex in ν .

Without condition, $\nu^* = \mu$ is still a stationary point of KL(q | | p). Example:

$$p(z) = \frac{1}{2} \text{Normal}(-m,1) + \frac{1}{2} \text{Normal}(m,1)$$
$$q(z) = \text{Normal}(\nu,1)$$

Condition

 $\log p$ is concave on \mathbb{R}^d and strictly concave on some open set of \mathbb{R}^d .

 \Rightarrow **KL** $(q_{\nu} | | p)$ is strictly convex in ν .

Without condition, $\nu^* = \mu$ is still a stationary point of $\mathrm{KL}(q | | p)$. Example:

$$p(z) = \frac{1}{2} \text{Normal}(-m,1) + \frac{1}{2} \text{Normal}(m,1)$$
$$q(z) = \text{Normal}(\nu,1)$$

p(z) is elliptically symmetric about a point μ if $\exists M$ s.t $\zeta = M^{-\frac{1}{2}}(z - \mu)$

and $p(\zeta)$ is spherically symmetric.

p(z) is elliptically symmetric about a point μ if $\exists M$ s.t $\zeta = M^{-\frac{1}{2}}(z - \mu)$

and $p(\zeta)$ is spherically symmetric.

*If M exists, a whole of family of conditioners exists.

p(z) is elliptically symmetric about a point μ if $\exists M$ s.t $\zeta = M^{-\frac{1}{2}}(z - \mu)$

and $p(\zeta)$ is spherically symmetric.

*If M exists, a whole of family of conditioners exists.

p(z) is elliptically symmetric about a point μ if $\exists M$ s.t $\zeta = M^{-\frac{1}{2}}(z - \mu)$

and $p(\zeta)$ is spherically symmetric.

*If M exists, a whole of family of conditioners exists.

Theorem

• Let p(z) be elliptically symmetric.

p(z) is elliptically symmetric about a point μ if $\exists M$ s.t $\zeta = M^{-\frac{1}{2}}(z - \mu)$

and $p(\zeta)$ is spherically symmetric.

*If *M* exists, a whole of family of conditioners exists.

- Let p(z) be elliptically symmetric.
- Let \mathcal{Q} be a family with <u>location-scale</u> parameter (ν, S) , with a spherically symmetric base distribution q_0 .

p(z) is elliptically symmetric about a point μ if $\exists M$ s.t $\zeta = M^{-\frac{1}{2}}(z - \mu)$

and $p(\zeta)$ is spherically symmetric.

*If \overline{M} exists, a whole of family of conditioners exists.

- Let p(z) be elliptically symmetric.
- Let \mathcal{Q} be a family with <u>location-scale</u> parameter (ν, S) , with a spherically symmetric base distribution q_0 .
- Then, under some regularity conditions, a minimizer of $\mathbf{KL}(q | | p)$ yields $S^* = \gamma^2 M$ for some $\gamma \in \mathbb{R}$.

p(z) is elliptically symmetric about a point μ if $\exists M$ s.t $\zeta = M^{-\frac{1}{2}}(z - \mu)$

and $p(\zeta)$ is spherically symmetric.

*If M exists, a whole of family of conditioners exists.

Theorem

- Let p(z) be elliptically symmetric.
- Let Q be a family with <u>location-scale</u> parameter (ν, S) , with a spherically symmetric base distribution q_0 .
- Then, under some regularity conditions, a minimizer of $\mathbf{KL}(q | | p)$ yields $S^* = \gamma^2 M$ for some $\gamma \in \mathbb{R}$.

p = multivariate Student-t

q = multivariate Gaussian

Definition

p(z) is elliptically symmetric about a point μ if $\exists M$ s.t $\zeta = M^{-\frac{1}{2}}(z - \mu)$

and $p(\zeta)$ is spherically symmetric.

*If M exists, a whole of family of conditioners exists.

Theorem

- Let p(z) be elliptically symmetric.
- Let \mathcal{Q} be a family with <u>location-scale</u> parameter (ν, S) , with a spherically symmetric base distribution q_0 .
- Then, under some regularity conditions, a minimizer of $\mathbf{KL}(q | | p)$ yields $S^* = \gamma^2 M$ for some $\gamma \in \mathbb{R}$.

Which statistics do we recover?

p = multivariate Student-t q = multivariate Gaussian

Definition

p(z) is elliptically symmetric about a point μ if $\exists M$ s.t $\zeta = M^{-\frac{1}{2}}(z - \mu)$

and $p(\zeta)$ is spherically symmetric.

*If *M* exists, a whole of family of conditioners exists.

Theorem

- Let p(z) be elliptically symmetric.
- Let \mathcal{Q} be a family with <u>location-scale</u> parameter (ν, S) , with a spherically symmetric base distribution q_0 .
- Then, under some regularity conditions, a minimizer of $\mathbf{KL}(q | | p)$ yields $S^* = \gamma^2 M$ for some $\gamma \in \mathbb{R}$.

p = multivariate Student-t

q = multivariate Gaussian

Which statistics do we recover?

X covariance matrix, scale matrix

Definition

p(z) is *elliptically symmetric* about a point μ if $\exists M$ s.t $\zeta = M^{-\frac{1}{2}}(z - \mu)$

and $p(\zeta)$ is spherically symmetric.

*If M exists, a whole of family of conditioners exists.

Theorem

- Let p(z) be elliptically symmetric.
- Let \mathcal{Q} be a family with <u>location-scale</u> parameter (ν, S) , with a spherically symmetric base distribution q_0 .
- Then, under some regularity conditions, a minimizer of $\mathbf{KL}(q | p)$ yields $S^* = \gamma^2 M$ for some $\gamma \in \mathbb{R}$.

p = multivariate Student-t q = multivariate Gaussian Which statistics do we recover?

X covariance matrix, scale matrix

correlation matrix

60

When does *p* have the studied symmetries?

In Bayesian setting:

$$p(z) = \pi(z \mid x_{1:N}) \propto \pi(z) \pi(x_{1:N} \mid z)$$

30

When does *p* have the studied symmetries?

In Bayesian setting:

$$p(z) = \pi(z \mid x_{1:N}) \propto \pi(z) \pi(x_{1:N} \mid z)$$

Sparse data regime: prior $\pi(z)$ dominates.

30

When does *p* have the studied symmetries?

In Bayesian setting:

$$p(z) = \pi(z \mid x_{1:N}) \propto \pi(z) \pi(x_{1:N} \mid z)$$

Sparse data regime: prior $\pi(z)$ dominates.

When does p have the studied symmetries?

In Bayesian setting:

$$p(z) = \pi(z \mid x_{1:N}) \propto \pi(z) \pi(x_{1:N} \mid z)$$

Sparse data regime: prior $\pi(z)$ dominates.

10 Jan

When does *p* have the studied symmetries?

In Bayesian setting:

$$p(z) = \pi(z \mid x_{1:N}) \propto \pi(z) \pi(x_{1:N} \mid z)$$

Sparse data regime: prior $\pi(z)$ dominates.

10 Jan

When does p have the studied symmetries?

In Bayesian setting:

$$p(z) = \pi(z \mid x_{1:N}) \propto \pi(z) \pi(x_{1:N} \mid z)$$

Sparse data regime: prior $\pi(z)$ dominates.

7. J

When does *p* have the studied symmetries?

In Bayesian setting:

$$p(z) = \pi(z \mid x_{1:N}) \propto \pi(z) \pi(x_{1:N} \mid z)$$

Sparse data regime: prior $\pi(z)$ dominates.

10 M

When does *p* have the studied symmetries?

In Bayesian setting:

$$p(z) = \pi(z \mid x_{1:N}) \propto \pi(z) \pi(x_{1:N} \mid z)$$

Sparse data regime: prior $\pi(z)$ dominates.

***Bernstein-von Mise:** as $N \to \infty$, $\pi(z \mid x_{1:N})$ becomes Gaussian (which has even and elliptical symmetry)

1.
$$z \sim p(z)$$

1.
$$z \sim p(z)$$

2.
$$z' = 2\mathbb{E}(z) - z$$

1.
$$z \sim p(z)$$

2.
$$z' = 2\mathbb{E}(z) - z$$

3.
$$\varepsilon(z) = \left| \frac{\log \pi(z \mid x) - \log \pi(z' \mid x)}{\log \pi(z \mid x)} \right|$$

Violation of symmetry

1.
$$z \sim p(z)$$

2.
$$z' = 2\mathbb{E}(z) - z$$

3.
$$\varepsilon(z) = \left| \frac{\log \pi(z \mid x) - \log \pi(z' \mid x)}{\log \pi(z \mid x)} \right|$$

(Scaled) error for estimates of mean across all dimensions

Violation of symmetry

1.
$$z \sim p(z)$$

2.
$$z' = 2\mathbb{E}(z) - z$$

3.
$$\varepsilon(z) = \frac{\log \pi(z \mid x) - \log \pi(z' \mid x)}{\log \pi(z \mid x)}$$

(Scaled) error for estimates of mean across all dimensions

Violation of symmetry

1.
$$z \sim p(z)$$

2.
$$z' = 2\mathbb{E}(z) - z$$

3.
$$\varepsilon(z) = \frac{\log \pi(z \mid x) - \log \pi(z' \mid x)}{\log \pi(z \mid x)}$$

(Scaled) error for estimates of mean across all dimensions

A more nuanced theory: error bound based on violation of symmetry

✓ A more nuanced theory: error bound based on violation of symmetry Follow example of previous work on pre-asymptotic regimes of VI [e.g. Katsevich and Rigollet'24]

✓ A more nuanced theory: error bound based on violation of symmetry Follow example of previous work on pre-asymptotic regimes of VI [e.g. Katsevich and Rigollet'24]

An actionable diagnostic:

Find measures of asymmetry we can use to bound error in practice.

✓ A more nuanced theory: error bound based on violation of symmetry Follow example of previous work on pre-asymptotic regimes of VI [e.g. Katsevich and Rigollet'24]

An actionable diagnostic:

Find measures of asymmetry we can use to bound error in practice.

Conjecture:

For each symmetry, there exists a statistics that VI recovers.