
Modernizing Markov Chains Monte Carlo for Scientific and Bayesian Modeling

Charles C. Margossian

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
under the Executive Committee

of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2022



© 2022

Charles C. Margossian

All Rights Reserved



Abstract

Modernizing Markov chains Monte Carlo for Scientific and Bayesian Modeling

Charles C. Margossian

The advent of probabilistic programming languages has galvanized scientists to write increas-

ingly diverse models to analyze data. Probabilistic models use a joint distribution over observed

and latent variables to describe at once elaborate scientific theories, non-trivial measurement pro-

cedures, information from previous studies, and more. To effectively deploy these models in a

data analysis, we need inference procedures which are reliable, flexible, and fast. In a Bayesian

analysis, inference boils down to estimating the expectation values and quantiles of the unnor-

malized posterior distribution. This estimation problem also arises in the study of non-Bayesian

probabilistic models, a prominent example being the Ising model of Statistical Physics.

Markov chains Monte Carlo (MCMC) algorithms provide a general-purpose sampling method

which can be used to construct sample estimators of moments and quantiles. Despite MCMC’s

compelling theory and empirical success, many models continue to frustrate MCMC, as well as

other inference strategies, effectively limiting our ability to use these models in a data analysis.

These challenges motivate new developments in MCMC. The term “modernize” in the title refers

to the deployment of methods which have revolutionized Computational Statistics and Machine

Learning in the past decade, including: (i) hardware accelerators to support massive paralleliza-

tion, (ii) approximate inference based on tractable densities, (iii) high-performance automatic dif-

ferentiation and (iv) continuous relaxations of discrete systems.

The growing availability of hardware accelerators such as GPUs has in the past years motivated



a general MCMC strategy, whereby we run many chains in parallel with a short sampling phase,

rather than a few chains with a long sampling phase. Unfortunately existing convergence diagnos-

tics are not designed for the “many short chains” regime. This is notably the case of the popular R̂

statistic which claims convergence only if the effective sample size per chain is large. We present

the nested R̂, denoted nR̂, a generalization of R̂ which does not conflate short chains and poor mix-

ing, and offers a useful diagnostic provided we run enough chains and meet certain initialization

conditions. Combined with nR̂, the short chain regime presents us with the opportunity to identify

optimal lengths for the warmup and sampling phases, as well as the optimal number of chains;

tuning parameters of MCMC which are otherwise chosen using heuristics or trial-and-error.

We next focus on semi-specialized algorithms for latent Gaussian models, arguably the most

widely used of class of hierarchical models. It is well understood that MCMC often struggles with

the geometry of the posterior distribution generated by these models. Using a Laplace approxi-

mation, we marginalize out the latent Gaussian variables and then integrate the remaining param-

eters with Hamiltonian Monte Carlo (HMC), a gradient-based MCMC. This approach combines

MCMC and a distributional approximation, and offers a useful alternative to pure MCMC or pure

approximation methods such as Variational Inference. We compare the three paradigms across a

range of general linear models, which admit a sophisticated prior, i.e. a Gaussian process and a

Horseshoe prior. To implement our scheme efficiently, we derive a novel automatic differentiation

method called the adjoint-differentiated Laplace approximation. This differentiation algorithm

propagates the minimal information needed to construct the gradient of the approximate marginal

likelihood, and yields a scalable differentiation method that is orders of magnitude faster than state

of the art differentiation for high-dimensional hyperparameters. We next discuss the application

of our algorithm to models with an unconventional likelihood, going beyond the classical setting

of general linear models. This necessitates a non-trivial generalization of the adjoint-differentiated

Laplace approximation, which we implement using higher-order adjoint methods. The generaliza-

tion works out to be both more general and more efficient. We apply the resulting method to an

unconventional latent Gaussian model, identifying promising features and highlighting persistent



challenges.

The final chapter of this dissertation focuses on a specific but rich problem: the Ising model of

Statistical Physics, and its generalization as the Potts and Spin Glass models. These models are

challenging because they are discrete, precluding the immediate use of gradient-based algorithms,

and exhibit multiple modes, notably at cold temperatures. We propose a new class of MCMC

algorithms to draw samples from Potts models by augmenting the target space with a carefully

constructed auxiliary Gaussian variable. In contrast to existing methods of a similar flavor, our

algorithm can take advantage of the low-rank structure of the coupling matrix and scales linearly

with the number of states in a Potts model. The method is applied to a broad range of coupling and

temperature regimes and compared to several sampling methods, allowing us to paint a nuanced

algorithmic landscape.
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Preface

Chapters 1 and 2 serve as an introduction, describing the big problems I have tried to

tackle and setting the stage for the book. These chapters review well-studied topics, as well as

more novel results which have appeared in recent papers and at conferences proceedings, on some

of which I have had the privilege to be a co-author. The main body of this dissertation is based on

three papers which form the basis for Chapters 3, 4, and 6. Chapter 3 includes several extensions

of the result initially presented by Margossian, Hoffman, and Sountsov (2021). Chapter 5 presents

a generalization of the results introduced in Chapter 4 (or Margossian et al. 2020b), and serves as

the early scaffolding of an upcoming paper. All chapters are meant to mostly stand on their own,

meaning each can be read independently.

While this dissertation focuses on inference algorithms, much of my approach and interest in

Statistics is driven by the applied work I do with outstanding colleagues, mostly in Pharmaco-

metrics and Epidemiology, but also in Physics, Astronomy, Ecology, Genetics, and Econometrics.

That is why the presented algorithms are often stress-tested by models which arise in scientific

contexts and break away from traditional statistics. Oftentimes I use the term “simple” to describe

a model by which I do not mean that the model is trivial, rather that it is a simplification of a more

elaborate scientific model. These simplifications help me distill the challenges posed by a class of

models and run experiments in a more timely manner.

To my own surprise, a substantial fraction of my work concerns automatic differentiation, that

is the algorithmic computation of derivatives. I debated including a chapter introducing automatic

differentiation with the concern that the topic is quite a rabbit hole and maybe somewhat orthogo-
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nal to my committee’s interests. A candidate for such a chapter was the review I wrote a few years

ago, titled “A Review of automatic differentiation and its efficient implementation” (Margossian

2019), which I believe is a fairly gentle introduction to the subject and seems to have gotten a fair

amount of attention. Another option was the paper I wrote with Michael Betancourt on the scal-

able differentiation of implicit functions (Margossian and Betancourt 2022). This paper contains

a detailed introduction to automatic differentiation, which may seem extensive but safeguards us

against many pitfalls (a common feature in Michael’s writing, who deserves most of the credit for

said introduction). The rest of the paper presents a unified framework for the application of auto-

matic differentiation to implicit functions, establishing connections between seemingly disparate

methods. A consequence is that steps, which in past derivations seem pulled out of thin air, are

now well-motivated and even natural. This work is useful to many statistical applications but it

remains tangential (pun intended). I have therefore decided to include this chapter as an appendix

to an already long dissertation.
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Chapter 1: Letting Uncertainty intervene
CHARLES C. MARGOSSIAN

Ainsi ce que [l’homme absurde] exige de

lui-même, c’est de vivre seulement avec ce

qu’il sait, de s’arranger de ce qui est, et ne

rien faire intervenir qui ne soit certain1.

Albert Camus,

Le Mythe de Sisyphe, 1942

In his essay Le Mythe de Sysiphe, Albert Camus asks the “question of suicide” – that is whether

or not to live – and begins with a review of what past philosophers have written on the subject.

What interests us here is not the object of Camus’ essay but his method, which is in part captured

by the above citation and the mandate to “not let anything intervene which is not certain.” His

predecessors, Camus argues, all resort to a leap, at one critical point or the other, to reach their

conclusions. Camus wants to safeguard himself from these leaps. He readily admits that nothing

is certain and wants to use this certitude (that nothing is certain) as the one and only starting point

for his reasoning. His goal is to construct a philosophy which does not cheat its way out of difficult

questions and reaches its conclusions only with the upmost rigor.

Camus may remind us of a mathematician, who doesn’t go beyond the logical implications

of their axioms. Once the parameters of the problem are set, everything else must follow. My

undergraduate education in Physics exposed me to a similar notion: we were given a problem with

exact inputs to which we applied the laws of Physics to obtain an exact solution. The problems

I encountered in experimental Physics, and later observational Astronomy, were quite different

1The [practitioner of my philosophy] demands of himself to live only we what he knows, to only deal with what is
and not let anything intervene which is not certain. Note that the term l’homme absurde in the original French refers
to the person who accepts the absurdity of the world, and the adjective absurde is not meant pejoratively.
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because we were dealing with imperfect data. Writing down the equation and plugging in the

numbers was not enough. The task of running calculations was deeply complicated. In some

sense to analyze data is to violate Camus’ mandate: we are letting something uncertain intervene.

Suddenly the perfect, reductionist machinery of Physics must be complemented by the machinery

of Statistics.

Statistics asks a simple question: We observe something, what do we learn? The answer is

often neither nothing, nor everything. We cannot jump to conclusions, nor ignore the data. Things

would be simpler if we could stick to indisputable facts. One solution is to construct very precise

experiments so as to reduce, even eliminate, uncertainty. Then something can be said, then the

theory can be confirmed or falsified. This is the scientific paradigm historically epitomized by

Antoine Lavoisier, who constructed several careful experiments to enable precise measurements

(Lavoisier 1789), thereby replacing alchemy with modern chemistry.

Unfortunately most of the data scientists have does not meet any standard of perfection. It is

contaminated by noise. Does this make the data worthless? No. It makes it non-ideal and the

uncertainty must be dealt with. Our conclusions and our propositions should be expressed in a

language suitable to describe uncertainty and that language is the language of probability. This

dissertation deals with probabilistic models and Bayesian inference. In the Bayesian framework

we endow unknown quantities with a probability measure, whereby we quantity the distribution of

plausible values a latent variable may take, according to our model and our data.

This is a departure from the point estimation framework, in which we estimate unknown quan-

tities using a single value which optimizes an objective function. While for instance the maximum

likelihood estimator produces, by some measure, the best fit to the data, it usually does not yield

the only plausible fit. Bayesian inference allows us, at least in theory, to consider an ensemble

of fits to our data and quantify how good each fit is relative to one another through the posterior

density. Consider a standard pharmacokinetic model, which describes how the drug diffuses in a
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Figure 1.1: Bayesian inference on a pharmacokinetic model. (Left) The points represent the mea-
sured drug concentration. The ribbons are obtained by simulating from a fitted model and represent
the 50% and 95% posterior interval. (Right) While we cannot exactly calculate the clearance rate,
the posterior gives us a distribution of plausible values.

patient’s blood during a clinical trial. The model adopts a log-normal likelihood,

y ∼ logNormal(log f (t, θ), σ2),

where f describes the evolution of the drug over time. The function f can be derived by solving

a differential equation and properly describing the clinical event schedule of the trial. For more

details see, for example, Margossian, Zhang, and Gillespie (2022, section 2). f is parameterized

by various pharmacological parameters, including CL, the clearance rate of the drug. Based on

our noisy data, can we calculate CL? No, not exactly at least. We can however construct a distri-

bution of plausible values for CL (Figure 1.1). Bayesian inference provides us with a measure of

uncertainty, since a broad posterior indicates that wildly different fits explain the data. Similarly

a large posterior variance for an unknown quantity of interest suggests that our model is not con-

fident in what this quantity might be. This can inform our decision to trust the model, revise it,

or collect more data. There are also practical points in dealing with a distribution, rather than an

optimum, since for some models the objective function may be ill-posed. Two important examples

are mixtures of distributions and hierarchical models, which do not admit a finite likelihood but

5



still produce well-posed posterior distributions with finite moments.

Bayesian models also allow us to encode assumptions about certain variables through prior

distributions. The non-probabilistic alternative would be to either fix the variables or treat them

as completely unknown. This can limit the types of model we use and it is often not an accurate

description of our state of knowledge. Let us consider a concrete example: in an early analysis

of the COVID-19 outbreak (Hauser et al. 2020), my colleagues and I estimated the mortality rate,

based on data collected on a subsample of the population, biased towards individuals with severe

symptoms. To make the model identifiable, we needed to provide the rate of symptomatic indi-

viduals. This quantity is unknown and fixing it would have meant making a strong assumption.

There were however isolated circumstances where an entire population had been tested, whether

individuals were symptomatic or not. A meta-analysis of these cases allowed us to construct a

prior distribution on the symptomatic rate, which reflected our knowledge (and lack thereof). The

Bayesian machinery furthermore ensured that the uncertainty encoded in this prior propagated to

the posterior distribution.

One point of contention with Bayesian Statistics is that we are treating unknown variables as

random variables when in fact they may be constant. Here the term random variable needs to be

understood in its abstract measure theoretical sense (e.g. Jacod and Protter 2004, Chapters 1, 5);

we want to use this mathematical formalism however it may be useful to do so, and not conflate

this formalism with colloquial connotations of the word “random”. It is possible to estimate the

speed of light in vacuum, c, using a Bayesian model, without violating the postulates of Special

Relativity (e.g Gelman et al. 2013, Chapter 3). So long as the constant is unknown, it is useful to

endow it with a distribution to describe how consistent various values of the unknown are with the

data and the model.

A more substantial objection is that any conclusion based on the posterior distributions takes

the model we are using as given. This is a leap. The phrase “according to our model” should

be more ubiquitous. Crucially inference must be distinguished from Statistics as a broader field,

which puts our modeling choices under scrutiny. Bayesian modeling does not stop at Bayesian
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Figure 1.2: Model development as an iterative process. Fitting the model is only one step in the
broader workflow we use to analyze data. Figure borrowed from Grinsztajn et al. (2021).

inference. Models must be criticized and, if needed, revised. This idea is reflected in many articles,

notably discussions on Box’s loop (Box and Draper 1987; Blei 2014) and the Bayesian Workflow

(Gabry et al. 2019; Betancourt 2020; Gelman et al. 2020), which describes model development as

an iterative process (Figure 1.2). Going back to the COVID-19 example, the model presented by

Hauser et al. (2020) is the ∼15th iteration, obtained after multiple iterations of Box’s loop.

Colleagues and I explore in details the development process of the COVID-19 model in a

subsequent paper (Grinsztajn et al. 2021), an article I am particularly fond of because it devotes

a great deal of time to failing models. In doing so, our paper elucidates the oftentimes hidden

missteps required to develop a useful model. While we can be methodical in our approach, there is

no systematic way to address failing models, something papers on the Bayesian Workflow readily

recognize. It is difficult, if not impossible, to automate the workflow, certainly once we are willing

to consider a rich enough set of models to analyze our data. At some point, the modeler makes a

choice. As my colleague Dan Simpson pointed out to me, the ability to revise the model presents

us with a degree of freedom that our modeling theories have a difficult time accounting for. This

can be a problem, particularly when we are trying to use data to verify a model. The pragmatic

realization here is that, once we have exposed the limitations of a model, we are morally obligated

7



to revise the model. A confirmatory analysis which falsifies a model becomes exploratory.

If I am willing to use expressions such as “criticize the model” or “failing models”, surely I

must have in mind some absolute measure of how good a model is. I do not. What bearing on

reality a model has is a deep and difficult question. Researchers in Machine Learning adopt a

pragmatic perspective. They cut to the chase: how well does a model perform a task? It remains

to define the task: prediction, classification, sorting, or measurement (e.g. inverse problems) to

name a few examples. Often however we expect models to give us insights in more than one way,

which complicates model criticism. For example, we may ask of our model to be both predictive

and scientifically interpretable.

This dissertation focuses primarily on probabilistic computation and Bayesian inference. While

we study these subjects we should keep in mind the bigger picture of the workflow. How might

a modeler use the algorithms in this book, not only to do one calculation but more broadly to do

scientific research? How well does an algorithm support the workflow? Is it amiable to criticism?

Can an algorithm be applied to a range of models without requiring too much tuning effort from the

user? What trade-offs does it present between speed and flexibility, and how does this impact model

development? Once we consider enough dimensions, it becomes difficult to elect one algorithm

as uniformly the best. Different methods present different trade-offs, and we must do our best to

paint a nuanced algorithmic landscape.

Acknowledgment
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Chapter 2: What makes Bayesian computation hard?
CHARLES C. MARGOSSIAN

Many scientific problems require us to understand the properties of a probability distribution

with an unknown normalizing constant. This is a fundamental problem in the study of probabilis-

tic models, such as Ising models, and in Bayesian statistics, where all our inferential conclusions

follow from the posterior distribution. This chapter discusses challenges that arise when trying to

compute the posterior. Our goal is to gain additional perspectives with which we can understand

the role of our algorithms across a rich modeling space. Surveying many examples allows us to

distinguish specialized algorithms which are efficient on a narrow class of models and general pur-

pose tools. Among the latter, Hamiltonian Monte Carlo (HMC) has emerged as a powerful method

for Bayesian inference. This chapter provides a review of HMC and its implementations in prob-

abilistic programming languages. Despite its broad success, HMC may still struggle with certain

classes of models. To understand what makes a model difficult, I propose to reason about the

computational challenges respectively posed by the prior and the likelihood. I review hierarchical

priors, a well-studied and notoriously difficult class of priors. As a case study for challenging like-

lihoods, I analyze ordinary differential equation (ODE)-based likelihoods, exploring new ideas on

how to study ODEs in a Bayesian context. Throughout this chapter, the probabilistic programming

language Stan is used to demonstrate the implementation of inference algorithms and perform

Bayesian analysis on a few examples.

2.1 General purpose and specialized algorithms

Our ability to efficiently compute estimators of the posterior mean, variance, and quantiles

varies wildly across models. To reason about what makes a Bayesian model computationally chal-
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Figure 2.1: Qualitative topology of Bayesian models. A set of models (Table 2.1) organized ac-
cording to how computationally challenging their prior and their likelihood are. Specialized algo-
rithms, such as the fast normal-normal (“Fast No-No”) or the embedded Laplace approximation
(“HMC + Laplace”) scale well with large data and can handle challenging priors for certain
models. A general purpose tool of choice is MCMC. GP stands for “Gaussian process” and PBPK
for “physiologically based pharmacokinetic”.
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Likelihood Prior Reference
Regularized linear regression Normal Normal

COVID-19 survey Normal Diagonal hierarchical normal (Greengard et al. 2021)

Spatiotemporal COVID-19 survey Normal Dense Gaussian process Section 2.1

Prostate cancer microarray Normal Horseshoe prior

(simplified)
Regularized Poisson log Poisson log Normal

Disease map of Finland Poisson log Gaussian process Chapter 4

Sparse kernel interaction model Bernoulli logit Horse shoe Gaussian process Chapter 4

Prostate cancer microarray Bernoulli logit Horse shoe Chapter 4

PK 2 cpt linear ODE with Informative e.g (Margossian, Zhang, and Gillespie 2022)

clinical event schedule

Population PK 2 cpt linear ODE with Diagonal hierarchical normal e.g. (Margossian, Zhang, and Gillespie 2022)

clinical event schedule

Friberg-Karlsson semi-mechanistic nonlinear ODE with Informative (e.g. Friberg et al. 2002,

PK/PD clinical event schedule Margossian, Zhang, and Gillespie 2022)

Population Friberg-Karlsson semi nonlinear ODE with Diagonal hierarchical normal (e.g. Friberg et al. 2002,

mechanistic - PK/PD clinical event schedule Margossian, Zhang, and Gillespie 2022)

Prostate cancer NN Neural network Normal (Broussard et al. 2021)

Sparse prostate cancer NN Neural network Horseshoe on first layers, (Broussard et al. 2021)

normal otherwise

“Monster” PBPK nonlinear ODE Diagonal hierarchical, (Gelman, Bois, and Jiang 1996)

strongly informative (in progress)

Bone mineral density mechanistic model, Informative (Peterson and Riggs 2010)

systems pharmacology large non-linear ODE

(no full Bayesian inference)

Table 2.1: Models displayed in Figure 2.1. PK stands for “pharmacokinetics”, PD for “phar-
macodynamics”, PB for “physiologically based” and NN for “neural network”. For additional
references on pharmacokinetics and pharmacodynamics models, see Gibaldi and Perrier (1982)
and Gastonguay and Metrum Institute Facility (2013).
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lenging, we may consider three qualitative axis: (i) the “complexity” of the likelihood (ii) the

“complexity” of the prior and (iii) the size of the data. Each of these axis alone can lead to com-

putational challenges, resulting in prohibitively slow and inaccurate inference. Useful algorithms

present trade-offs across this modeling space. Figure 2.1 and Table 2.1 present a diverse set of

models with a combination of challenging priors and likelihoods, some of which we discuss in

upcoming chapters.

A general purpose inference tool of choice is Markov chains Monte Carlo (MCMC)(Neal 1993;

Robert and Casella 2004). Over the past decade the Hamiltonian Monte Carlo (HMC) sampler has

emerged as one of the more useful MCMC algorithms (Duane et al. 1987; Neal 2012; Betancourt

2018a). Provided we can evaluate the gradient of the log posterior density it is possible to apply

HMC and, under certain regularity conditions we will review in Section 2.2.1, obtain accurate

estimations of the posterior moments. As such HMC can be attempted on a large class of models,

for example every model in Figure 2.1. This does not mean that HMC immediately gives us

satisfactory results. Certain models may require careful tuning and reparameterizations and can

take a prohibitively long time to achieve a desired accuracy. Long run times are problematic when

fitting a single model and the problem is exacerbated when we consider the Bayesian Workflow, in

which we build and fit many models.

A specialized algorithm works extremely well on a narrow class of models. The Fast No-No

algorithm my colleagues and I developed efficiently computes posterior moments for hierarchical

models with a normal likelihood, a normal prior with diagonal covariance, and an arbitrary hyper-

prior (Greengard et al. 2021). Relative to HMC, the method proves useful in scenarios where we

have large data. One example in our paper concerns the analysis of survey data during the first

wave of COVID-19, wherein individuals self-report symptoms. We fit a multilevel regression and

poststratification model (Gelman and Little 1997) to several weeks of data, covering 100,000’s of

observations, across 1,000’s of cities. Running HMC takes ∼10 hours; by contrast the Fast No-No

algorithm achieves higher accuracy in ∼7 seconds. This in itself is an important speed up and

furthermore it means the model can be scaled to larger data. On the other hand, any complication
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of the model itself is impossible. For example a more elaborate version of the model describes

spatiotemporal variations using a Gaussian Process prior, and is no longer compatible with the

Fast No-No method.

Approximate Bayesian algorithms try to find within a family of tractable distributions, Q,

the distribution which best approximates the posterior by some measure. Examples include the

Laplace approximation (Laplace 1774), the integrated Laplace approximation (Tierney and Kadane

1986; Rue, Martino, and Chopin 2009; Rue et al. 2017), and variational inference (Blei, Kucukel-

bir, and McAuliffe 2017). These approaches are relatively specialized because they rely on the

existence of a distribution in Q which approximates the posterior reasonably well.

In Chapter 4, I present a hybrid approach which combines HMC with an integrated Laplace

approximation designed to do Bayesian inference on latent Gaussian models with a non-normal

likelihood1. For these models, the posterior distribution factors into multiple terms, some of which

can be well handled by a Laplace approximation, while others require a more general algorithm.

Empirically this hybrid method works well for Bayesian models with a log-concave likelihood,

without placing severe restrictions on the type of priors we can use (Figure 2.1). In this sense this

algorithm constitutes a semi-specialized algorithm. Chapter 5 explores the potential of this method

as we move along the likelihood axis.

Once we consider less conventional likelihoods, it becomes more challenging to find useful ap-

proximations. We might choose to simplify the model (hopefully without oversimplifying) which

is not unlike using approximate inference. The field of Climate Science presents interesting ex-

amples in which one attempts to replace a detailed mechanistic model with a Physics informed

Machine Learning model (e.g Willard et al. 2021). In many settings however MCMC remains a

tool of choice, especially if we care about faithfully doing full Bayesian inference on our model of

choice.
1If the likelihood is normal, the Laplace approximation can be replaced by analytical calculations. In this case

HMC is combined with an exact marginalization.
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Figure 2.2: Drifting Markov chain. After being initialized in the target space, a Markov chain
produced by MCMC (orange dots) finds and explores the region where the probability mass con-
centrates (blue band).

2.2 A Review of Hamiltonian Monte Carlo

This section presents a high-level review of MCMC and HMC, thereby setting the stage for

upcoming chapters. I review certain elementary facts, necessary to understand existing challenges,

and discuss research directions which have emerged in recent years.

2.2.1 A primer on Markov chains Monte Carlo

MCMC samplers generate approximate samples from a target distribution, say π(θ | y), with

which we can construct sample estimators, also termed Monte Carlo estimators, for various quanti-

ties of interest. Classically an MCMC sampler over θ ∈ Θ is fully characterized by two properties:

1. an initial distribution, π0, from which we draw the first point of our Markov chain,

2. a transition kernel, defined by the conditional distribution Γ(θ(i+1) | θ(i)), and which informs

how subsequent points of the Markov chain are generated.

Conceptually the transition kernel is designed to guide the Markov chain towards regions where

the target probability mass concentrates (Figure 2.2). In contrast to exact independent draws from

the posterior, MCMC samples suffer from two defects: (i) the samples are correlated and (ii) the

samples are biased by our initialization.
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A particularly useful property is for the stationary distribution of the Markov chain to be π(θ |

y). Under certain conditions, the Markov chain converges to its stationary distribution, meaning

that asymptotically a point drawn by our MCMC sampler will have the wanted distribution, and

moreover that as we run the algorithm the initial bias decays. This informs the practice of “burn-

in” whereby we discard the first, presumably heavily biased, samples produced by our algorithm.

While very attractive, this theoretical property does not always translate into a practical algorithm,

especially in pathological cases where the initial bias cannot be overcome in any reasonable amount

of time. This is a well-known problem in multimodal cases, where transitions between modes can

be exceedingly rare. Fortunately in these cases we can often rely on diagnostics, such as the R̂

statistics and its variants, to warn us that we have not achieved convergence (Gelman and Rubin

1992; Vehtari et al. 2020).

Another desirable property is for our Monte Carlo estimators to observe a central limit theorem

(CLT). Equipped with a CLT, we can characterize the precision of our estimators and furthermore

the efficiency of MCMC algorithms. Consider the mean estimator

Ê f (θ) =
1
N

N∑
i=1

f
(
θ(i)

)
, (2.1)

meant to estimate the expectation value E f (θ), using MCMC samples {θ(1), θ(2), · · · , θ(N)}. If a

central limit theorem holds, then we have the following convergence in distribution as N →∞:

√
ESS

(
Ê f (θ) − E f (θ)

)
σ f

d
→ Normal(0,1), (2.2)

where

σ2
f = Varθ |y f (θ), ESS =

VarΓÊ f (θ)
Varθ |y f (θ)

, (2.3)

and we assume σ f < ∞. Here ESS stands for effective sample size. Writing it as a ratio of variance

provides a useful perspective; another option is to write it using the Markov chain’s autocorrelation,
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ρt , at lag t (Geyer 2012),

ESS =
N

1 + 2
∑∞

t=1 ρt
. (2.4)

This formula highlights how a positive autocorrelation causes the effective sample size to be

smaller than the actual sample size, N . This in turn manifests as a slower convergence rate in

Equation 2.2 and a larger variance for our estimator. Consequently MCMC algorithms which pro-

duce Markov chains with a low autocorrelation tend to perform better, although, as we will see in

Chapter 3, this condition can be somewhat relaxed.

While the conditions under which we obtain convergence to the stationary distribution and

a central limit theorem are verified in many applications, these conditions remain non-trivial.

Roberts and Rosenthal (2004) and Betancout (2021) provide reviews on this subject.

MCMC techniques span a history of several decades and continue to be developed (Robert

and Casella 2011), with some novel advances presented in this dissertation. One indication of

how popular MCMC is amongst the scientific community is the fundamental role it plays in sta-

tistical software and probabilistic programming languages. The Metropolis-Hastings algorithm

(Metropolis et al. 1953; Hastings 1970) and the Gibbs sampler (Geman and Geman 1984) are the

algorithmic foundation of the software BUGS (Lunn et al. 2000) and JAGS (Plummer 2003). The

Hamiltonian Monte Carlo (HMC) sampler (Duane et al. 1987; Neal 2012; Betancourt 2018a) is

favored amongst more recent software, notably Stan (Carpenter et al. 2017), PyMC3 (Salvatier,

Wiecki, and Fonnesbeck 2016), TensorFlow Probability (Lao et al. 2020) and Turing (Ge, Xu, and

Ghahramani 2018).

HMC offers an attractive alternative to more traditional MCMC algorithms because it is less

vulnerable to geometric structures, such as strong correlations across high dimensions (e.g Hoff-

man and Gelman 2014), resulting in faster convergence to stationarity and lower autocorrelation.

Furthermore bias explorations of the posterior distribution can often be diagnosed with HMC, no-

tably through the detection of divergent transitions (Betancourt and Girolami 2015; Betancourt

2018a).

Other MCMC algorithms continue to be developed and receive extensive attention in recent lit-
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erature, notably sequential Monte Carlo (e.g. Dai et al. 2020), ensemble particles for online learn-

ing (e.g Lu and Van Roy 2017), strategies to sample over discrete spaces (e.g. Zhang et al. 2012;

Grathwohl et al. 2021; Margossian and Mukherjee 2021), and even Metropolis-Hastings and Gibbs

samplers. A discussion of these algorithms is beyond the scope of this chapter and our focus is on

HMC.

2.2.2 Transition kernel

I here review elementary details of HMC and direct the reader to Neal (2012) and Betancourt

(2018a) for a more thorough introduction. For simplicity, assume θ ∈ Θ = RD. HMC introduces

an auxiliary momentum variable, r ∈ RD, and proposes a sampling scheme over the augmented

space (θ,r) ∈ R2D. At each MCMC iteration, we simulate the trajectory of a fictitious particle over

a time τ, subject to a potential energy determined by our posterior distribution. Given a starting

point θ(i), HMC proceeds in two steps:

1. draw r ∼ p(r), where p(r) is a distribution we will define,

2. simulate a trajectory, θ(i) → θ(i+1), according to Hamilton’s equations of motion.

In this context, Hamilton’s equations reduce to the following system of two differential equations

dr
dt
= −

∂U(θ)
∂θ

,
dθ
dt
= M−1r, (2.5)

where U is a potential energy function, M is the mass matrix, and t is the fictitious time. To obtain

a useful transition kernel, we set

U(θ) = − log π(θ | y). (2.6)

The change in momentum or equivalently (up to a constant) the acceleration of the fictitious par-

ticle is then determined by ∇θ log π(θ | y), whilst the movement of the particle is in turn informed

by the momentum, r(t).
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We can define an energy or Hamiltonian for our fictitious particle, according to

H(θ,r) = U(θ) + K(r), (2.7)

where U is the above defined potential energy and

K(r) =
1
2

rT M−1r, (2.8)

is the kinetic energy. Along a simulated trajectory,H is constant. Furthermore the joint distribution

of (θ,r) is given by the canonical distribution of Statistical Mechanics,

p(θ,r) ∝ exp (−H(θ,r)) = exp (−U(θ) − K(r)) , (2.9)

which indicates our physical system prefers states with a low energy. The factorization of the

Hamiltonian implies that p(θ,r) = p(θ)p(r), from which we recover the marginal distributions,

p(θ) ∝ exp (−U(θ)) = π(θ | y), (2.10)

as desired, and

p(r) ∝ exp
(
−

1
2

r t M−1r
)
, (2.11)

which is the kernel of a normal distribution with covariance matrix M .

2.2.3 Tuning parameters

The performance of HMC is highly sensitive to certain tuning parameters. Here performance

must be understood as the ability to (i) converge quickly to the stationary distribution and (ii)

efficiently generate samples with a low autocorrelation. Unfortunately there exists no optimal

tuning that works across the range of models we are interested in. Tuning HMC can be a significant

burden for users, which might explain the somewhat slow adoption of the method by the scientific
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community.

A major milestone for the popularization of the algorithm is reached with the development

of self-tuning or adaptive HMC, such as the No-U-Turn-Sampler (NUTS) (Hoffman and Gelman

2014) and its later variation as dynamic HMC (Betancourt 2018a). The burn-in phase now serves

not only to overcome the initial bias but also to tune the sampler, using information from the early

samples. Hence the term burn-in is often replaced with the more appropriate name warmup. The

wide implementation of these methods in statistical software and their application to many scien-

tific problems speaks to their success. Nevertheless the problem of tuning MCMC is not completely

solved. Even dynamic HMC can require fine-tuning, once confronted to difficult enough problems,

as we will see in Chapter 4.

Another critique of NUTS and dynamic HMC is that their tuning strategy is somewhat in-

compatible with MCMC regimes which exploit modern hardware such as Graphics and Tensor

Processing Units (GPUs, TPUs). This is notably a problem in contexts where we run many chains

in parallel to achieve good performance (Hoffman and Ma 2020; Hoffman, Radul, and Sountsov

2021). As a result, new adaptive HMC samplers are being developed, with recent additions to the

literature including the ChEES-HMC (Hoffman, Radul, and Sountsov 2021) and the SNAPER-

HMC (Sountsov and Hoffman 2021) algorithms, both implemented in TensorFlow Probability.

In Chapter 3 we further study how modern hardware can help us address general MCMC tuning

problems by studying the question of diagnosing convergence.

Integrator step size

I now briefly review the tuning parameters of HMC. The first challenge we encounter is that

we cannot solve Hamilton’s equations of motion analytically. Instead we resort to a leapfrog

integrator (Algorithm 2.1), a numerical integrator parametrized by a step size ε . This tuning

parameter controls the trade-off between the precision and speed of the integrator. The accuracy

of the integrator can be vetted by checking that the Hamiltonian, H(θ,r), is conserved along the

trajectory. To correct for errors in our computation, we can add a Metropolis step after simulating
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the trajectory, θ(i) → θ(i+1), from time t = 0 to time t = τ, with acceptance probability,

Pr(accept) = min
(

p(θ(i+1),r(τ))
p(θ(i),r(0))

)
. (2.12)

Another option, notably implemented in Stan, is to sample along the trajectories, using the Hamil-

tonian as weights (Betancourt 2018a). A target acceptance probability can be used to tune ε during

the first MCMC iterations. The default target acceptance in Stan is 0.8, although it is often useful

to increase this to higher values.

Algorithm 2.1: Leapfrog integrator for simulating Hamiltonian trajectory. The second
gradient evaluated in a leapfrog step can be used as the first gradient for the next step.
Hence we only need one gradient evaluation per step.

1 input: trajectory length L, step size ε , starting position θ(0), and momentum r(0).
2 for t ∈ {0,1, · · · , L − 1} do

3 r(t + ε/2) ← r(t) + ε
2∇θ log π(θ(t) | y)

4 θ(t + ε) ← θ(t) + εM−1r(t + ε/2)
5 r(t + ε) ← r(t + ε/2) − ε

2∇θπ(θ(t + ε) | y)

6 end

7 return: θ(Lε)

Trajectory length

The next crucial tuning parameter is the length of each simulation, or τ, before we resample

the momentum. A short trajectory results in inefficient movement across Θ, while a long trajectory

is computationally wasteful. How to best set τ remains an active research area with different

criterions presenting various trade-offs (e.g Neal 2012; Hoffman and Gelman 2014; Hoffman,

Radul, and Sountsov 2021; Sountsov and Hoffman 2021).

Mass matrix

Finally we need to pick the mass matrix, M . What mass could we possibly ascribe to our

fictitious particle? Once again the analogy with Physics serves us well: mass is the resistance to
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acceleration, and moreover from Equation 2.5, reproduced below,

dθ
dt
= M−1r,

it is clear that M determines the directions in Θ along which the fictitious particle moves the least.

This naturally suggests setting M−1 to the posterior covariance, or rather some early estimate

of the covariance. The particle then moves more along directions with a high variance. This

heuristic breaks down when the directions along which we wish to move varies with θ. This is a

notorious problem for hierarchical priors, which are prone to generate Neal’s funnel (Neal 2003)

(Figure 2.3, right). A more refined approach is to use a dynamic mass matrix and set M(θ) to

the local curvature, as we move across the parameter space. This is the underlying idea behind

the Riemannian Hamiltonian Monte Carlo (RHMC) sampler (Girolami and Calderhead 2011).

Unfortunately RHMC’s expansive requirement to compute and store higher-order derivatives of

π(θ | y) has limited its widespread use.

The mass matrix receives various treatments across implementations. Hoffman, Radul, and

Sountsov (2021), in their discussion of ChEES-HMC, simply take it to be the identity matrix.

Stan’s default is to use a diagonal inverse mass matrix, M−1, with each entry corresponding to

the sample posterior variance, estimated using early samples during the warmup phase. In the

common case where the posterior covariance is non-zero, a dense inverse matrix can improve the

per iteration performance of HMC. This however comes at a dire computational cost: each leap

frog step involves a matrix multiplication (Algorithm 2.1, line 4),

θ(t + ε) ← θ(t) + εM−1r(t + ε/2), (2.13)

with costs O(D2) if M−1 is dense, versus O(D) for diagonal M−1. A similar complication occurs

when we consider the cost of sampling the auxiliary momentum. The problem is exacerbated

by memory considerations in high-dimensions and the fact that the sample covariance may be

inaccurate. Stan’s default is based on the expectation that these added computational costs do not
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Figure 2.3: Posterior geometry in hierarchical models. (Left) The directions along which to move
can be well characterized by a non-diagonal mass matrix which approximates the posterior co-
variance. (Right) In the funnel case, we cannot build a suitable mass matrix because the curvature
of the posterior varies across the parameter space and diverges as τ → 0.

justify the improved adaptation.

Bales et al. (2019) study a strategy using a low-rank approximation of the posterior covariance,

which is for instance suitable when considering elliptical posterior distributions (Figure 2.3, left).

The costs of each HMC iteration remains linear in D with additional costs coming from the rank

of M−1. Zhang et al. (2021) also propose to estimate a low-rank mass matrix, this time using a

variational approximation of π(θ | y), rather than a sample covariance.

Adaptive warmup

HMC’s warmup serves two purposes: (i) converging (approximatively) to the stationary distri-

bution and (ii) adapting the tuning parameters in order to reduce the autocorrelation of the chain

once we start sampling. Regarding (i), it is worth noting that the Markov chain typically quickly

finds the sampling region, i.e. the region where the probability mass concentrates. Even then the

chain remains biased by its initialization and it must sojourn across the sampling region in order

to make the initial bias negligible. In Stan, adaptation of the tuning parameters occurs over differ-

ent phases (Table 2.2). Phases I and III are short, and serve to adapt the step size, ε . The more

substantial Phase II is used to adapt the mass matrix, M . The length of each phase, and moreover

the length of the warmup is determined ahead of time, with Stan’s default being 1,000 iterations.
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Stan’s adaptive HMC Prototype Path finder
I • starting at initialization, θ0, early exploration • Construct optimization path between

(75 iter) with highly varying θ. θ0 and the mode of π(θ | y).

• convergence to sampling region. • Find sampling region along path and

• initial tuning of the step size ε . initialize HMC Phase I.

II • semi-stable exploration of sampling region. • Use variational approx. of π(θ | y)

(875 iter) • extensive tuning of the inverse mass matrix, to tune sampling parameters.

as we learn more about π(θ | y). • OR use Phase II of HMC.

III • continued exploration of the sampling region. • Use HMC’s Phase III.

(50 iter) • final tuning of the step size ε .

Table 2.2: Adaptive Warmup of Stan’s HMC and the prototype pathfinder over 1000 iterations

Strategies exist to adaptively set the warmup length (e.g. Zhang et al. 2020; Margossian, Hoffman,

and Sountsov 2021) and will be examined in Chapter 3.

Zhang et al. (2021) explore several directions to bypass certain steps of Stan’s warmup (Ta-

ble 2.2). Initial convergence to the sampling region is replaced with a pathfinding procedure,

wherein one finds the mode (or pole in cases where the mode is ill-defined) of π(θ | y), and

identifies a point on the sampling region along the optimization path (Figure 2.4). The procedure

is further enhanced by using a variational approximation of the posterior distribution. Using this

approximation, we can generate initial samples for the Markov chain and estimate the posterior co-

variance, thereby setting M−1 and bypassing Phase II of Stan’s warmup. We experiment with this

approach on several pharmacokinetic examples and find the benefits to be uneven across models

(Section 2.4).

Another warmup strategy is to share information between multiple chains running in parallel.

In an HMC context this idea is used in the cross-chain warmup by Zhang et al. (2020) and the

ChESS-HMC by Hoffman, Radul, and Sountsov (2021). These strategies naturally take advantage

of scenarios where we run many chains in parallel. But like all parallel schemes, they assume a

more or less homogeneous behavior amongst the chains. ChEES-HMC’s strategy to use the same

step size and trajectory length for all chains can be problematic, notably when the behavior of the

likelihood varies dramatically across the parameter space. I examine such examples in Section 2.4.

23



Figure 2.4: Pathinder. Starting far off in the parameter space, the pathfinder uses an optimizer to
find the posterior mode. Due to concentration of measure, the probability mass concentrates away
from the mode, hence we want to initialize MCMC not at the mode, but along the optimization
path.

In Chapter 3 I study MCMC strategies which run many chains in parallel with a short sampling

phase, potentially with a single iteration. If each chain generates exactly one draw, we no longer

care about the autocorrelation of the chain. It remains to insure that the chains converge. In other

words, the warmup now only serves one goal. On the other hand a well-tuned sampler is expected

to converge faster. Understanding how much we can compromise on the warmup in the many-

short-chains regime therefore remains an important open question.

2.2.4 Gradient computation

HMC requires computing the gradient of the log posterior density. Fortunately this can be

obtained by differentiating the log prior and log likelihood, given

∇θ log π(θ | y) = ∇θ log π(θ) + ∇θ log π(y | θ). (2.14)

The burden of implementing gradients by hand is in large parts alleviated by automatic differentia-

tion, which numerically evaluates derivatives based on code to compute log π(y, θ) (Griewank and

Walther 2008; Baydin et al. 2018; Margossian 2019). Despite its wild success, automatic differen-

tiation does not, at least not immediately, solve the problem of efficiently computing the derivatives

of non-trivial functions. We will extensively concern ourselves with this problem in Chapters 4 and

5, and Appendix A, notably when discussing likelihoods based on implicit functions.
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indicates the observation belongs to the ith group, parameterized by θi. For fixed φ, the marginal
posterior distribution π(θ2 | y, φ) only depends on observations in the second group.

2.3 Example of challenging priors: hierarchical models

Priors can frustrate our inference algorithms by inducing non-trivial correlations between pa-

rameters. These correlations manifest as geometric structures in the posterior density, such as the

ellipse and the funnel displayed in Figure 2.3. Anisotropic densities can be difficult to estimate

with approximate inference: for example, mean field variational inference assumes the parame-

ters have no posterior correlation, an easily violated assumption. MCMC too can be frustrated

by anisotropies: random-walk algorithms, such as the Gibbs and Metropolis-Hastings samplers,

may fail to find good directions along which to “walk” and become inefficient. In the case of

HMC, it becomes difficult to adapt the mass matrix and other tuning parameters, resulting in slow

convergence and large autocorrelation.

An important example of challenging prior arises in hierarchical models, which are defined by

a series of conditional distributions

φ ∼ π(φ),

θ1, θ2, · · · , θM | φ ∼ π(θ | φ), (2.15)

y1, y2, · · · , yN | θ, φ ∼ π(y | θ, φ).
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Hierarchical models constitute a broad class of models and are used to describe data generated

by heterogeneous sources. Consider the following example: a population pharmacokinetic model

describes the drug diffusion process using data from multiple patients and ascribes to each patient

their own physiological parameters. The data for the k th patient is conditionally dependent only on

the parameters corresponding to that patient,

π(yi∈g(k) | θ) = π(yi∈g(k) | θ j∈g(k)), (2.16)

where g maps to the relevant indices for the k th patient.

While each patient is assigned their own distinct parameters, we model these parameters as

belonging to the same population. For simplicity, let us assume that there is only one parameter,

θk , per patient, and furthermore that the hierarchical prior is normal with a diagonal covariance,

θ ∼ Normal(µ, τ2IM). (2.17)

We also assume that the elements of µ are all identical, meaning the θ’s are regressed to a common

mean. Our hyperparameters are then simply φ = (µ, τ). The above formula states that the θk’s are

heterogeneous but still bear certain similarities, since they all come from the same population. If

µ and τ are fixed, we have constructed a regularizing prior. Conditional on y and φ, the θk’s only

depend on the observations in the k th group (Figure 2.5). A hierarchical model treats the hyperpa-

rameters as additional unknown variables. This allows a “back-and-forth” flow of information and

the phenomenon of partial pooling, whereby the marginal posterior distribution of θk depends on

the data for patient k and the data for all the other patients. This dependence structure can be seen

by writing out the corresponding graphical model (Figure 2.6). Conceptually this means that what

we learn from one patient can teach us something (though not everything) about another patient.

A side-effect of partial pooling is that the θk’s may be correlated. The interaction between τ

and θk also generates geometric structure. As τ goes to 0, the hierarchical prior strongly regresses

θk to µ. For lager τ, little regularization over θk occurs, meaning the variance of θk increases. The
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Figure 2.6: Graphical representation of a simple hierarchical model. If we marginalize out φ and
θ−2, the marginal distribution π(θ2 | y) depends on the observations in all groups.

result is a funnel shape (Figure 2.3). In the limit where τ goes to 0, the joint density blows up

leading to numerical instability. The funnel is manifested by the prior; whether it actually appears

in the posterior depends on the likelihood. Sparse data typically allow the prior to dominate and

result in a funnel.

There exists various approaches to address this well-known problem. A popular strategy is

reparameterization (Papaspiliopoulos, Roberts, and Sköld 2007). Our above formulation of the

model is a centered parameterization. The non-centered parameterizartion produces an equivalent

data generating process using a standard normal vector, η, and reconstructs θ as follows:

ηk ∼ N(0,1),

θk = τηk + µ.

Our sampler is then applied to π(η, τ, µ | y), with posterior samples of θ obtained using the above

transformation. The absence of an explicit prior on η which depends on τ and µ can result in a bet-

ter behaved posterior density. The geometry can still be problematic, producing inverted funnels,

depending on how the likelihood and the prior interact. In general it is difficult to choose which

parameterization to use without trial and error, and the problem is exacerbated by the possibility

that a particular parameterization may be appropriate only for a subset of the θk’s, especially when
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the amount of data in each group is uneven.

A different angle is to marginalize the θk’s, thereby removing the offending geometry. This

strategy proceeds in two steps:

1. draw samples from the marginal posterior π(µ, τ | y) ∝ π(y | µ, τ)π(µ, τ).

2. draw samples from the conditional distribution π(θ | y, µ, τ).

Provided we can implement this approach, we obtain samples from the joint posterior distribution,

π(θ, µ, τ | y). In all but the simplest cases, we lack an analytical expression for π(y | µ, τ) and

π(θ | y, µ, τ). We can in certain instances resort to approximations of these distributions, for

instance using a Laplace approximation (Tierney and Kadane 1986; Rue, Martino, and Chopin

2009; Margossian et al. 2020b), a topic we will discuss in Chapters 4 and 5.

2.4 Example of challenging likelihoods: ODE-based models

Bayesian inference algorithms require us to compute the log joint distribution, log π(y, θ) or its

gradient ∇θ log π(y, θ), many times for many different values of θ. Calculation of the gradient with

automatic differentiation requires us to evaluate the joint distribution, meaning the computation of

derivatives is at least as expansive as the evaluation of the log joint density. Certain algorithms

further require the evaluation of higher-order derivatives, at least for certain terms in the log joint

density.

Consider the example of HMC: the gradient must be evaluated once per step of the leapfrog

integrator (Algorithm 2.1). If we have an average discrete trajectory length L and a total of N

warmup and sampling iterations, the number of gradient evaluations is LN . Plugging in some real-

istic numbers, for L = 8 and N = 2× 103, our algorithm requires 1.6× 104 gradient evaluations! A

computational bottleneck arises if each gradient evaluation is expansive. This is a challenge when

large data imply expensive calculations of the log density. Another complication is that the gra-

dient must be evaluated for different values of θ, which may drastically impact the computational
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cost of differentiation. This is notably the case for likelihoods based on implicit functions, such as

algebraic equations, ordinary differential equations (ODEs), and marginal densities.

Likelihoods based on implicit functions arise in models that integrate a scientific model inside a

probabilistic model. While at times these implicit functions admit an analytical or semi-analytical

expression (e.g. matrix solve for linear algebraic equations, matrix exponential solution for linear

ODEs), many times we must resort to numerical integrators to obtain a solution. Efficient dif-

ferentiation of implicit functions can be done by solving an augmented system, a topic which is

extensively explored in Appendix A. This augmented system is usually much larger and introduces

additional overhead. Careful implementation is required to avoid computational pitfalls. Anecdo-

tally a first implementation of the disease transmission model by Hauser et al. 2020 took 3 days

to fit. Rewriting the code to evaluate the log joint density in such a way to make automatic differ-

entiation more efficient reduced the runtime to 2 hours; see Grinsztajn et al. (2021) for a detailed

discussion. With all this said I here focus on the original system and the case of ODEs, noting that

the augmented system inherits many properties of the original system.

A first-order ODE, with linear dependency on the derivative, is defined by the equality constrain

y′ = f (y, t, θ),

y(t = 0) = y0(θ),

where

• y ∈ RN is the (vector) solution we wish to evaluate at a desired time τ,

• y′ ∈ RN is the total derivative of y with respect to the time, t,

• θ ∈ RK are the model parameters,

• y0 ∈ R
N is the initial condition.

We generally assume that f and y0 can be evaluated.
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Popular numerical integrators for ODEs include the Runge-Kutta 4th/5th order (RK45) solver

(Dormand and Prince 1980; Karsten and Mulansky 2011), the backward differentiation (BDF)

solver (Cohen and Hindmarsh 1996; Serban and Hindmarsh 2005) and the leapfrog integrator,

which we have already encountered. Hindmarsh and Serban (2020) provide a comprehensive dis-

cussion on numerical integrators and their software implementation in the SUNDIALS C++ suite.

Solvers present various trade-offs but they all rely on the fundamental concepts introduced by Eu-

ler’s now outdated method (Algorithm 2.2), namely the use of a Taylor approximation (first-order

in the case of Euler’s method) of y in a neighborhood t,

ye(t + ε) := y(t) + ε f (y(t), t, θ), (2.18)

The local error introduced by the approximation can be obtained by taking the difference between

ye(t + ε) and y(t + ε), and doing a Taylor expansion of the latter:

ye(t + ε) − y(t + ε) =
1
2
ε2y′′(t) + O(ε3). (2.19)

The error here is O(ε2) and cumulates at each step. More recent integrators may have local error

O(ε t), with t > 2, and a global error which does not grow linearly with the number of steps. All

the same, a small step size ε improves the approximation but at the cost of requiring more steps

to go from the initial condition t = 0 to the desired time t = τ. Usually the user does not specify

ε , rather a tolerance for error. The algorithm then adaptively finds a step size which achieves the

desired precision.

2.4.1 Example: planetary motion2

To illustrate how the behavior of an ODE varies with the model parameters, we consider the

simple example of a planet in orbital motion around a star. The orbital dynamics of this system

2This section is based on the case study Bayesian model of planetary motion: exploring ideas for a modeling
workflow when dealing with ordinary differential equations and multimodality (Margossian and Gelman 2020).
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Algorithm 2.2: Euler’s method
1 input: initial condition y0, step size ε , time τ, derivative function f , model parameters θ.
2 t ← 0
3 y ← y0
4 while t < τ do
5 t ← t + ε
6 y ← y + ε f (y, t, θ)
7 end
8 return: y

are described by Hamilton’s equations of motion (Equation 2.5) subject to a gravitational potential

(Figure 2.7). The resulting ODE is

q′ =
p
m
,

p′ = −
k
r3 (q − q�), (2.20)

with

• q(t): the planet’s position over time,

• p(t): the planet’s momentum over time,

• k = GMm, with G the gravitational constant, M the star’s mass, and m the planet’s mass,

• q�: the star’s position, assumed to not vary over time.

• r =
√
(q − q�)T (q − q�) is the distance between the planet and the star.

Consider the model parameter k, which controls the strength of the gravitational interaction.

As k increases, so do the magnitude of p′ and higher-order derivatives of p. From Equation 2.19

we see that the error is O(ε2y′′(t)) when using Euler’s method. In general, for a fixed ε , the error

grows with the magnitude of higher-order derivatives of y. Given a target tolerance, larger higher-

order derivatives must be compensated by smaller step sizes, requiring the numerical integrator to

take more steps in order to go from t = 0 to t = τ. Consequently the time required by a numerical

integrator to solve the ODE depends on k!
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Figure 2.7: Orbital motion. The gravitational potential, induced by an attractive force between
the star and the planet, combined with a momentum orthogonal to the force, induces an orbital
motion.

Chain ID 1 2 3 4 5 6 7 8

time (s) 10.56 3.40 4433.93 181.98 3.50 10.74 3.59 10.42

Table 2.3: Run time for 8 Markov chains (500 warmup + 500 sampling iterations) on a planetary
motion model. The marginal posterior distribution of k is highly multimodal. At certain modes,
the large value of k requires a smaller step size ε to accurately solve Equation 2.20.

When estimating k using the observed positions of the planet with MCMC, we find that the

runtime of different Markov chains varies wildly, with some chains taking less than 4 seconds

to undergo 1,000 iterations, while others take minutes or hours (Table 2.3). This is because the

posterior distribution is multimodal in k. To be precise, the probability mass concentrates around

a single mode, however minor modes, while carrying a marginal probability mass, can still trap

Markov chains. A Markov chain caught in a mode where k is large must solve a more difficult

ODE and takes a longer time to run. For a more extensive discussion on this model, see Margossian

and Gelman (2020).
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2.4.2 Example: Michaelis-Menten pharmacokinetic model3

The required step size to achieve a wanted precision is not the only property of an ODE which

can change across the parameter space. Another consideration is whether the ODE system is stiff,

in which case numerical stability rather than precision requirements constrain the step length (Lam-

bert 1992). Non-stiff integrators, such as RK45, need a very small step size to achieve numerical

stability when used on a stiff system, resulting in slow computation. A stiff solver such as BDF

is then more appropriate. On the other hand if the system is non-stiff, the RK45 integrator can be

much faster. It can be difficult to know ahead of time whether or not a system of interest is stiff,

and which integrator to use.

In a Bayesian context we furthermore need to account for the ways in which an ODE system

changes across the parameter space. As a motivating example, consider a simplified Michaelis-

Menten pharmacokinetic model,

y′1 = −kay1,

y′2 = kay1 −
VmC

Km + C
, (2.21)

with

• y1 (mg): the drug mass in the Gut (the drug is administered orally),

• y2 (mg): the drug mass in the central compartment (blood and tissues into which the drug

diffuses quickly),

• ka (h−1): rate constant at which the drug flows from the gut to the central compartment

• C = y2/V (mg / L): the drug concentration in the central compartment, with V the volume

of the central compartment,

• Vm (mg / h): maximum rate achieved by the system,
3This section is based on the conference poster, Solving ODEs in a Bayesian context: challenges and opporunities

presented at the 2021 Population Approach Group in Europe conference; see Margossian et al. 2021.
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• Km (mg / L): Michaelis constant.

The patient receives a single dose, after which we measure the drug plasma concentration, cobs,

over time and estimate the model parameters θ = (ka,V,Vm,Km, σ). The full data generating

process is

ka ∼ logNormal(log 2.5,3),

V ∼ logNormal(log 35,0.5),

Vm ∼ logNormal(log 10,0.5),

Km ∼ logNormal(log 2.5,3),

σ ∼ Normal+(0,1),

C = y/V,

cobs ∼ Normal(C, σ2).

In the above model the priors, notably for ka and Km, are weakly informative. We run 8 chains

initialized with draws from the prior distribution.

Faced with this model, which numerical integrator should we use? Stan supports a non-stiff

RK45 solver and a stiff BDF solver. It is also possible to analytically solve the first ODE in

Equation 2.21 and plug in the result in the second ODE4.

We run the model with both the RK45 and BDF integrators and compare the runtimes across

8 chains, taking care to distinguish the various warmup phases of HMC (Figure 2.8). From this

experiment, we can make a few observations:

1. The runtime between chains does not vary much when using a BDF solver, in sharp contrast

to what we see with the RK45 solver.

2. On average, the RK45 solver is faster. However when running chains in parallel, the slowest

4I do not explore this option in this experiment and leave it to upcoming work. In this example, I do not expect
any significant speed up, although this approach has been useful when handling more sophisticated ODEs, such as the
Friberg-Karlsson semi-mechanistic model (Table 2.1); see Margossian and Gillespie (2017).
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Figure 2.8: Runtime over 8 chains when fitting a pharmacokinetic model with HMC using (left) a
BDF solver or (right) an RK45 solver.

chain determines the computation time. With this consideration in mind, the BDF solver is

faster.

3. The computation in RK45 is largely dominated by the warmup phases. The sampling phase

is much shorter than when using a BDF solver.

To more formally measure the performance of MCMC using either an RK45 or a BDF integra-

tor, we check that each method returns consistent estimates. We then calculate the average time

required to increase the ESS by 1 for the log joint distribution, log p(θ, cobs) (Figure 2.10). While

the joint distribution is not necessarily a quantity of interest, it is a function which depends on all

the model parameters. Focusing on one scalar allows for straightforward comparisons, even as the

number of parameters increases. Our measure may be termed the average relaxation time. Note

that our calculations account for the warmup time, meaning

Relaxation time :=
Warmup time + Sampling time

ESS
. (2.22)

This definition should be contrasted with calculations of the time required to increase the ESS from

0 to 1, or the time required to increase the ESS by 1 after convergence is achieved.

Results on using the RK45 or the BDF solvers motivate a strategy whereby we use a different
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Figure 2.9: Behavior of ODE across the parameter space. As the Markov chains (orange and
black dots) move across the parameter space, the behavior of the ODE may change. The elliptical
blue band represents the sampling region, i.e. the region where the posterior probability mass
concentrates. Three hypothetical cases for how the ODE may behave: (a) a non-stiff integrator
can be used for all phases of MCMC, (b) a stiff integrator may be suited to initialize the chain
before switching to a non-stiff solver, (c) no optimal solver can be used across the sampling region.
Another consideration is that different chains, depending on their respective positions, may deal
with different ODE behaviors, resulting in varying runtimes.

integrator for different phases. Our reasoning is that the parameter values, θ, vary more wildly at

the start of the MCMC process, when the chains have not converged to the sampling region and/or

the tuning parameters are not well adapted. In these early regions, the parameters may take more

extreme values, requiring a more stable integrator. If the ODE in our model is stiff only in the

“outer” regions of the parameter space, then using a stiff integrator at first and switching to a non-

stiff integrator can lead to more efficient computation. Naturally there are many possible scenarios

for the behavior of an ODE across the parameter space (Figure 2.9).

Table 2.4 presents alternatives to uniformly using one integrator when running dynamic HMC.

We also consider using a prototype pathfinder to find good initializations and adapt the mass matrix

before running HMC (Zhang et al. 2021). Here too we may consider using a BDF or an RK45

integrator at various phases of the algorithm. Figure 2.10 plots the average relaxation time for all

methods, when applied to our pharmacokinetic model and a population extension with 3 patients,

using a hierarchical prior. The results of our numerical experiments may be summarized as follows:

1. For the single patient model, using BDF during the warmup phase improves the stability

of the sampler. Improved initializations do not warrant the additional cost of running the
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Pathfinding Phase I Phase II Phase III Sampling

HMC warmup, early switch NA BDF RK45 RK45 RK45

HMC warmup, late switch NA BDF BDF RK45 RK45

Pathfinder, RK45 BDF RK45 RK45 RK45 RK45

Pathfinder, late switch BDF BDF BDF RK45 RK45

Pathfinder, approx. tuning BDF NA NA RK45 RK45

Table 2.4: Combining different integrators. A stiff integrator may be necessary during the warmup,
but overkill when sampling. Applying this heuristic, we propose several schemes.

pathfinder5; however estimating tuning parameters based on the variational approximation

produces the most efficient sampler.

2. For the population model, we suspect the additional data stabilizes the posterior distribution,

making uniform RK45 the best option. In this scenario, running the pathfinder is expansive

and the estimated tuning parameter is suboptimal (we can diagnose this with the Pareto

smooth importance sampling (Zhang et al. 2021)).

2.4.3 Concluding remarks

Picking which integrator to use when fitting a Bayesian model is a delicate problem. This tun-

ing problem becomes more difficult when we contemplate switching integrators between various

phases of an algorithm. Unfortunately there is in general no way to anticipate how an ODE might

behave along the path taken by a Markov chain. What is more, if we run many chains in parallel,

we are more likely to encounter a parameter configurations for which an ODE is difficult to inte-

grate. This leads to the common case where at least one chain lags behind. Strategies which run

many chains in parallel are particularly vulnerable to this phenomenon.

How to best tune ODE integrators in a Bayesian context remains an open question. In practice

preventing Markov chains from exploring regions where parameters take on absurd values, through

5The here presented prototype is written in R; a new prototype written in C++ may yield better performance.
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Figure 2.10: Performance of algorithms when switching integrators during various phases across
8 chains. Relaxation time, i.e. time to increase the effective sample size by 1, measured for
log p(θ, cobs). The orange crossed dot is the median time, and the red circled dot the worst time. For
each method which run 8 or more chains in parallel, we may prefer consistency to good median
performance.

careful initialization and the use of informative priors when these are available, can be a viable

option.
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Chapter 3: Nested R̂: assessing the convergence of Markov chains Monte

Carlo when running many short chains

CHARLES C. MARGOSSIAN1, MATTHEW D. HOFFMAN2, AND PAVEL SOUNTSOV2

When using Markov chain Monte Carlo (MCMC) algorithms, we can increase the number of

samples either by running longer chains or by running more chains. Practitioners often prefer

the first approach because chains need an initial “warmup” phase to forget their initial states; the

number of operations needed for warmup is constant with respect to chain length but increases

linearly with the number of chains. However, highly parallel hardware accelerators such as GPUs

may allow us to run many chains in parallel almost as quickly as a single chain. This makes it more

attractive to run many chains with a short sampling phase. Unfortunately, existing diagnostics are

not designed for the “many short chains” regime. This is notably the case for the popular R̂ statistic

which claims convergence only if the effective sample size per chain is sufficiently large. We

present nR̂, a generalization of R̂, which does not conflate short chains and poor mixing, and offers

a useful diagnostic provided we run enough chains and meet certain initialization conditions. We

define what constitutes a proper warmup in the many-chains regime and recommend a threshold

for nR̂. Furthermore we use nR̂ to construct a warmup scheme with an adaptive length, allowing

users to avoid running their MCMC algorithms longer than necessary.

3.1 Introduction

The growing availability of parallel computation on CPUs, GPUs, and even specialized chips

such as TPUs, has generated interest in MCMC strategies where we run many chains in parallel,

using a short sampling phase (Lao et al. 2020; Hoffman and Ma 2020). New MCMC algorithms,
1Columbia University, Department of Statistics; work mostly done while an intern at Google Research.
2Google Research
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such as ChEES-HMC and SNAPER-HMC are particularly well adapted to run many chains, lever-

aging the parallelization capacities of accelerators (Hoffman, Radul, and Sountsov 2021; Sountsov

and Hoffman 2021). For many Bayesian inference applications, an effective sample size (ESS)

of 100 may be adequate, as suggested by the default diagnostics in the statistical software Stan

(Carpenter et al. 2017). In that case, we may want to run as many as ∼100 chains. Indeed, if the

chains are independent and stationary – in other words, they have been properly warmed up –, then

the number of chains lower-bounds the ESS, provided the target distribution has a finite variance.

This lower bound is attained in the limit where each chain has one iteration. We note that, in our

experience, the target ESS may vary between applications, at times being as low as 10 or as high

as 500. Per the above reasoning, the target ESS informs how much parallelization is useful.

Existing diagnostics are not designed for the regime where we have many chains each made

up of only a few iterations. This is notably the case for the widely used R̂ statistic (e.g. Gelman

and Rubin 1992; Vehtari et al. 2020). R̂ checks for consistency between chains and converges to

1 if the chains produce Monte Carlo estimators in sufficiently good agreement. As we shall see,

convergence to 1 however requires the measured ESS per chain to be large, a condition which is

incompatible with running many short chains; if diagnosing convergence requires us to run long

chains, we cannot reap the benefits of running many short chains in parallel.

We present a generalization of R̂, called nested R̂, and denoted nR̂, which checks for consis-

tency between groups of chains. nR̂ is a useful diagnostic for the many-short-chains regime and

works under conditions similar to those that the classic R̂ assumes. The main additional require-

ment is to initialize each chain within a group at the same point. Because properly warmed-up

MCMC forgets its starting point, this requirement does not affect the quality of our estimates; it

does, however, help us diagnose convergence failures. While R̂ converges to 1 only when the num-

ber of post-warmup samples is large, nR̂ can go to 1 (once the chains are properly warmed up)

when either the number of iterations or the number of chains is large. Hence for a sufficiently large

number of chains we can diagnose convergence with only a few sampling iterations.

If we use a short sampling scheme, the computation of MCMC is dominated by the warmup

40



phase. To reduce this computational burden, we propose an adaptive warmup length scheme,

wherein we compute nR̂ using a few proposal samples after a short warmup window, and repeat

until convergence is diagnosed.

3.2 Three perspectives on R̂

Given a random variable, θ ∈ Θ, with a target distribution π, and a scalar function of inter-

est, f : Θ → R, our goal is to estimate the expectation value Eπ f , where we assume Varπ f is

finite. We call a Monte Carlo estimator any statistic, T , intended to estimate Eπ f . This defini-

tion encompasses the traditional Monte Carlo estimator used when doing MCMC sampling but it

is deliberately broader. Let Γ be the probability measure which generates T . Any Monte Carlo

estimator admits an effective sample size (ESS):

ESS ,
Varπ f
VarΓT

. (3.1)

Consider an MCMC sampler with stationary distribution π, which generates M chains, each

with N iterations. Each chain is initialized at a point θ(0m). We denote the nth sample from chain

m as θ(nm). It is common practice to first “warm up” the sampler for some number of iterations.

During the warmup phase, the Markov chains travel to the region where the probability mass

concentrates and begin exploring this region (Betancourt 2018a); early exploration also allows

us to tune the parameters of our sampler (e.g Hoffman and Gelman 2014; Hoffman, Radul, and

Sountsov 2021). Once the chain is warmed up, we generate the samples we use for our inference.

For ease of notation, we consider estimation of Eπθ and note all our calculations generalize to

functions of θ with a finite variance.

The classic MCMC estimator is:

θ̄(··) =
1

MN

M∑
m=1

N∑
n=1

θ(nm). (3.2)
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A useful perspective is to view this as an average of M Monte Carlo estimators,

θ̄(·m) =
1
N

N∑
n=1

θ(nm), (3.3)

each based on a single chain.

The R̂ statistic, in its first and simplest iteration as the potential scale reduction factor (Gelman

and Rubin 1992), compares a measure of the total variance across all chains, A = VarΓθ(nm), to a

measure of within-chain variance, W = EΓ
[
VarΓ(θ(nm) | m = m∗)

]
. In words, W is the expected

variance given that the samples are all in the same chain. We estimate these quantities using the

sample variance estimators

Ŵ =
1
M

M∑
m=1

1
N − 1

N∑
n=1

(
θ(nm) − θ̄(·m)

)2
(3.4)

and

Â = Ŵ +
1

M − 1

M∑
m=1

(
θ̄(·m) − θ̄(··)

)2

, Ŵ + B̂.

(3.5)

The above expression is motivated by the law of total variance3. B̂ measures the between-chain

variance, B = VarΓ θ̄(·m). We then define

R̂ ,
√

Â/Ŵ . (3.6)

If the chains are mixing, we expect the total variance and the within-chain variance to converge

in probability to Varπθ as N grows, meaning R̂ converges to 1. A common practice to assess

convergence of the chains is to check that R̂ ≤ 1 + ε , for some ε > 0. The choice of ε varies

3The original R̂ uses a slightly different estimator for the within-chain variance when computing Â. There Ŵ is
scaled by 1/N , rather than 1/(N − 1). This explains why occasionally R̂ < 1. This is of little concern when N is large,
but we care about the case where N is small, and therefore adjust the R̂ statistic slightly.
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across in the literature, and has evolved over time, starting at ε = 0.1 and recently using the more

conservative value ε = 0.01 (Vats and Knudson 2021; Vehtari et al. 2020).

A second perspective on R̂ is due to Vats and Knudson (2021) who observe that when the chains

are stationary Ŵ/B̂ is a measure of the effective sample size per chain. Observing that

R̂ =
√

Â/Ŵ =
√

1 + B̂/Ŵ, (3.7)

we see that R̂ decays to 1 only once we produce chains with a large effective sample size.

We now present a third and novel perspective, wherein we view R̂ as a measure of agreement

between the Monte Carlo estimators produced by each chain without assuming stationarity. Each

chain is distinguished by its initialization point and its seed but Eπθ is independent of both of

these factors; if either influences our estimator too much then that estimator may not be accurate.

Equation 3.7 shows that R̂ converges to 1 if B̂ is small relative to Ŵ . For a small ε , such that

(1 + ε)2 ≈ 1 + 2ε , R̂ ≤ 1 + ε is approximately equivalent to

B̂ . 2εŴ . (3.8)

This inequality establishes a tolerance value for B̂, determined by Ŵ and ε . From the above

formula, we can make a few observations.

First, for small N , the variance of the per-chain Monte Carlo estimator, θ(·m), stays relatively

large, meaning B̂ will not be small even if VarΓ θ̄(··) is. We demonstrate this on the two-dimensional

“Banana” distribution,

θ1 ∼ Normal(0,10);

θ2 | θ1 ∼ Normal(0.03(θ2
1 − 100),1). (3.9)

This is a simple transformation of a two-dimensional normal with highly non-convex level sets.

After warming up 512 chains for 200 iterations, we only require 1 sampling iteration to achieve
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Figure 3.1: Accuracy of Monte Carlo for Eθ1 in Banana problem. When using many chains, we
only require a single sampling iteration per chain to reach the wanted precision, once the chains
are warmed up.

a squared error below Varπθ/100. Using 4 chains requires a sampling phase with ∼200 - 400

iterations (Figure 3.1). Still R̂ is indifferent to the number of chains we run (Figure 3.2).

Second, R̂ focuses on the variance of the per-chain Monte Carlo estimator, not its squared er-

ror. R̂ therefore cannot detect when all our Monte Carlo estimators suffer from the same bias. A

canonical example is a multimodal target π, with all chains getting stuck with high probability in

the same mode after N iterations. Changing the MCMC process, for instance by using overdis-

persed initializations can help ensure B̂ stays large unless we achieve stationarity.

Third, in the case where Varπθ = ∞, Ŵ diverges and the tolerance bound in Equation 3.8

becomes meaningless. The inadequacy of R̂ when the target distribution has non-finite variance is

discussed by Vehtari et al. (2020), who address this problem using a rank-normalization scheme.

We will explore this idea in Section 3.3.4.

3.3 Nested R̂

The key idea behind nR̂ is to compare Monte Carlo estimators whose variance decreases with

both the number of iterations and the number of chains. A natural way to do this is to group chains
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Figure 3.2: Applying R̂ and nR̂ to the first dimension of the Banana problem. R̂ is indifferent to
the number of chains we run, despite the increased precision. nR̂ on the other hand is sensitive to
the number of chains.

into super chains. Our MCMC process now has K super chains, each comprising M chains, and we

denote θ(nmk) the nth sample from chain m of super chain k. The Monte Carlo estimators compared

by nR̂ are the sample means of each super chain,

θ̄(..k) =
1

MN

M∑
m=1

N∑
n=1

θ(nmk). (3.10)

Provided we have enough chains per group, nR̂ quickly goes to 1, reflecting the high precision of

θ̄(··) after a few iterations (Figure 3.2).

The new diagnostic follows the same formula as the original R̂ except that B̂ and Ŵ are now

measures of the between and within-super-chain variances. Overloading our notation, for nR̂ we

define

B̂ =
1

K − 1

K∑
k=1

(
θ̄(··k) − θ̄(···)

)2
(3.11)
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Figure 3.3: Bimodal target. When faced with a multimodal target, most MCMC schemes commit
to one mode and only transition to another mode with a low probability, resulting in poor mixing.
Which mode a chain commits to is often determined by where the chain is initialized.

and

Ŵ =
1
K

K∑
k=1

[
1

M − 1

M∑
m=1

(
θ̄(·mk) − θ̄(··k)

)2

+
1
M

M∑
m=1

1
N − 1

N∑
n=1

(
θ(nmk) − θ̄(·mk)

)2
]
. (3.12)

In the special case where N = 1 we take the within-chain variance to be 0, meaning the second

term in the above equation vanishes. Note this makes Ŵ smaller and results in a stricter tolerance

on B̂. Similarly when M = 1 we take the between chain variance to be 0, thereby removing the

first term when calculating Ŵ . nR̂ then reduces to R̂. We interpret the classical R̂ setting as the

special case where we run one chain per super chain.

3.3.1 Limitations when using independent chains

Unfortunately nR̂ as defined above is too optimistic, as illustrated by the following thought

experiment. Consider a bimodal target distribution

π = 0.3 Normal(−10,1) + 0.7 Normal(10,1),
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and suppose each chain is either initialized at -10 or 10 with equal probability. Typical MCMC

chains will not be able to mix across the high energy barrier between the modes. As a result, which

mode a chain explores depends strongly on initialization, and MCMC incorrectly ascribes (on

average) probability mass 0.5 to each mode (Figure 3.3). The per-chain Monte Carlo estimators

are inconsistent, since they estimate the means at different modes. This allows R̂ to diagnose the

issue. On the other hand, the per-super-chain Monte Carlo estimators may look consistent and nR̂

incorrectly claims convergence.

To see why, let θ̄(.mk)
N be the Monte Carlo estimator we obtain from chain m of super chain

k after N iterations. Let σ2
N = Varθ̄(.mk)

N . We use a subscript on the variance because we do not

assume stationarity. Because the chains are independent, we have

Varθ̄(..k) =
1
M
σ2

N .

Regardless of whether the chain is stationary or not, this value becomes arbitrarily small for large

M . This is not unexpected: we obtain good agreement between MCMC estimators so long as they

are based on draws from the same distribution, whether or not it is the stationary distribution. One

extreme case would be for nR̂ to claim convergence after a single iteration because all the esti-

mators are accurately computing expectation values with respect to the initialization distribution

π0.

3.3.2 Initialization requirement for the chains

To remedy the above issue, we impose the constraint that all chains within a super chain are

initialized at the same point, θk
0 . This allows us to track the influence of the initial point. In our

thought experiment, the initial point determines which mode each chain explores. Our proposed

initialization scheme therefore produces super chains in disagreement with one another, meaning

we can now identify with nR̂ that our MCMC estimates are unreliable.

We can understand the behavior of nR̂ under this initialization condition via a variance decom-
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position:

Varθ̄(..k) = E
[
Var

(
θ̄(..k) | θk

0

)]
+ Var

[
E

(
θ̄(..k) | θk

0

)]
. (3.13)

We denote B := Varθ̄(..k), Be := E[Var(θ̄(··k) | θk
0 )], and Bv := Var[E(θ̄(··k) | θk

0 )]. The above

equation is in this notation

B = Be + Bv . (3.14)

Conditional on θk
0 , the chains are independent. Thus Be goes to 0 either as M increases or, once we

have reached stationarity, as N increases. Bv, on the other hand, is indifferent to M . For it to decay,

the expected value of θ̄(..k) must become independent of θk
0 . To use a common phrase, the chains

must “forget” where they started. We will further refine this decomposition in Section 3.3.3.

What we have with our proposed initialization scheme is a useful compromise between R̂ and

nR̂ applied to independent chains. We term the latter the naive nR̂, and save the original term, nR̂,

devoid of any prefix, for the case where we use one intial point per super chain. nR̂ first behaves

like R̂ and, as the correlation to the starting point decays, switches to behaving like the naive nR̂

if the chains converge. We demonstrate this transient behavior (or lack thereof) on two examples:

(i) a Gaussian distribution where the chains mix and the transient behavior occurs; (ii) a mixture

of two Gaussian distributions where the chains fail to mix and nR̂ does not transition to the naive

behavior (Figure 3.4).

Returning to our thought experiment in Section 3.3.1, we may wander about the case where

the target π is multimodal and which mode each chain commits to is not determined by the initial

point (Figure 3.5). That is the seed of the chain determines the mode where the chain drifts. It then

becomes impossible to distinguish the samples generated by different super chains, especially as

M grows, even though the chains are not mixing. This calls for yet another revision to our MCMC

scheme, whereby we insure that all chains within a super chain commit to the same mode. To be

clear, from an inferential perspective, there is no benefit to restricting multiple chains to explore

the same mode. Rather our assumption here is that reliable inference is not possible, and we want

to make sure that nR̂ diagnoses MCMC’s failure.

48



Figure 3.4: Sample variance of Monte Carlo estimators. We compare estimators using a single
chain, a naive super chain made of independent chains, and a super chain made of chains initial-
ized at the same point.

A natural way to achieve our goal is to run K initializing chains for I iterations and then split

each chain into M chains with a different seed. For a sufficiently large I, all M chains start within

the orbit of the same mode. We fall back into the safe case where the initialization determines

which mode a super chain samples from. Which value of I to use is unclear. An alternative would

be to use the pathfinder by Zhang et al. (2021) to generate initial points for each super chain in the

orbit of a mode.

With all this said, we have yet to encounter an application where the seed alone determines

which mode a chain converges to. This seems to require a particularly unfortunate initial distri-

bution, π0, with respect to the target π. For now we resort to the simpler initialization scheme

where all chains in a super chain are initialized at the same point. We leave to future work the

investigation of other initialization strategies.
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Figure 3.5: Bimodal target. Two chains initialized at the same point drift to a different mode.

3.3.3 Violation of stationarity and threshold for nR̂

An important tuning parameter for nR̂ is the threshold ε , which we use to determine if the chain

is approximatively stationary. The condition nR̂ ≤ 1 + ε is equivalent to

B̂

Ŵ
≤ δ, (3.15)

where δ = 2ε + ε2 ≈ 2ε . To simplify our calculations, assume each chain only contains one

iteration, that is N = 1, which is the most interesting case in the many-short-chains regime. Denote

W the number of warmup iterations. Until stationarity is achieved, the distribution of θ depends

onW.

Definition 3.1. We say an estimator is L-consistent if it converges in probability to its estimand

as L → ∞. Furthermore an (L, J)-consistent estimator converges in probability to its estimand if

L →∞ and J →∞.

Assuming θ admits a second moment, B̂ is a K-consistent estimator of

B = Varθ̄(··k)
W

, (3.16)

and Ŵ is a (K,M)-consistent estimator of

W = E
(
Var

(
θ̄
(·mk)
W
| θk

0

))
. (3.17)
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The behavior of B/W , which corresponds to what B̂/Ŵ measures, may be understood via the

following Lemma.

Lemma 3.1. Suppose N = 1. Then

B
W
=

1
M
+

Var
(
E

(
θ̄
(··k)
W
| θk

0

))
EVar

(
θ̄
(·mk)
W
| θk

0

) , (3.18)

and the condition B/W ≤ δ is equivalent to

Var
(
E

(
θ̄
(··k)
W
| θk

0

))
≤

(
δ −

1
M

)
EVar

(
θ̄
(·mk)
W
| θk

0

)
. (3.19)

Proof. Given that the chains are independent, conditional on θk
0 , we have

Var
(
θ̄
(··k)
W
| θk

0

)
=

1
M

Var
(
θ̄
(·mk)
W
| θk

0

)
.

Thus

B
W
=

Varθ̄(··k)
W

MEVar
(
θ̄
(··k)
W
| θk

0

)
=
EVar

(
θ̄
(··k)
W
| θk

0

)
+ Var

(
E(θ̄
(··k)
W
| θk

0 )
)

MEVar
(
θ̄
(··k)
W
| θk

0

)
=

1
M
+

Var(E
(
θ̄
(··k)|θk0 )
W

)
EVar

(
θ̄
(·mk)
W
| θk

0

) .
Equation 3.19 follows from plugging the above in B/W ≤ δ and rearranging the terms. �

Equation 3.18 decomposes B/W into a stationary and a non-stationary term. The first term,

1/M , is indifferent to W, and at stationarity corresponds to the inverse effective sample size

per super chain. This is roughly equivalent to the term recovered by Vats and Knudson (2021),

who analyze R̂ under the assumption of stationarity. The second term emerges once we drop the
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assumption of stationarity and can thus be interpreted as our chains’ violation of stationarity. This

is the quantity we want to control. If we are mindful of the correction incurred by the stationary

term, we can pick ε to set a tolerance on the violation. Equation 3.18 warns us that B/W is

lower-bounded by 1/M , which may make it difficult to achieve a certain tolerance criterion. More

generally when N > 1, δ may not be a reasonably sharp upper bound on the violation of stationarity

if the effective sample size per super chain is not sufficiently large. This motivates running a few

samples when M is relatively small.

This analysis does not immediately give us a principled threshold value to use but it makes the

tuning parameter ε more interpretable. In practice, we find using ε = 0.01 works reasonably well,

although our numerical experiments suggest sometimes using lower values. The above analysis

comes with the caveat that B̂/Ŵ is an estimate of B/W , meaning our results hold exactly only in

an asymptotic sense along K and M (however N need not be large!). We discuss some steps to

reduce the variance of B̂/Ŵ in the next section.

3.3.4 Rank-normalization and analysis under normal approximation

Using a rank-normalization of the θ(i)’s allows us to make our diagnostic robust to the case

where Varθ = ∞ (Vehtari et al. 2020). Under the transformation and for a large sample size, our

MCMC samples become approximatively normal, which enables further analysis of nR̂.

Rank-normalization replaces each sample, θ(nmk), by its rank across all samples, r (nmk), and

then applies an inverse-normal transformation. This procedure is intended to avoid assumptions of

normality and finds extensive use in a hypothesis testing framework (Friedman 1937; Fisher and

Yates 1938; Blom 1958). The rank-normalized samples are obtained via

z(nmk) = Φ−1
(

r (nmk) − 3/8
N MK + 1/4

)
, (3.20)

whereΦ−1 is the inverse-normal CDF. Blom (1958) proposes a fractional offset to address the edge

cases posed by the first and last fractional rank, respectively 0 and 1, which go to ±∞ under theΦ−1
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transformation. As the total number of samples, T = N MK , grows, we have P
(
r (t) ≤ r

)
−r ≤ 1/T

and thus

lim
T→∞

r (t) − 3/8
T + 1/4

d
→ Uniform(0,1). (3.21)

From this we deduce convergence in distribution of z(t) to a standard normal and an error which

decreases with T (due to the non-linearity of Φ−1 the error is larger in the tails than near the mode).

Once again, we consider the useful edge case where N = 1 and moving forward, we assume

that r has a normal stationary distribution. We can then work out an approximate distribution for

nR̂ under the assumption of stationarity. This allows us to lay the foundation for a hypothesis test

and study how to pick K and M in a limiting case.

Lemma 3.2. Suppose (i) the Markov chains are stationary, (ii) N = 1, meaning each chain has a

single sample, and (iii) the stationary distribution is standard normal. Then

B̂

Ŵ
∼

1
M

FK−1,K(M−1). (3.22)

Proof. At stationarity, the chains have forgotten their initialization and are mutually independent.

Since N = 1 and by assumption (iii), our samples are i.i.d standard normal. Denote our samples

z(mk), where we drop the (n) index since N = 1. Let

S2
p =

1
MK − K

K∑
k=1

M∑
m=1

(
z(mk) − z̄(·k)

)2

=
1
K

K∑
k=1

1
M − 1

M∑
m=1

(
z(mk) − z̄(·k)

)2
, (3.23)

and note that S2
p = Ŵ , in the special case where N = 1. Then following the argument by Casella

and Berger (2002, chapter 11) on the ANOVA null, we have that

∑K
k=1 M

(
z̄(k ·) − z̄(··)

)2

Ŵ
∼ (K − 1)FK−1,MK−K . (3.24)
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Rearranging the terms,

1
K−1

∑K
k=1

(
z̄(k ·) − z̄(··)

)2

Ŵ
=

B̂

Ŵ
∼

1
M

FK−1,MK−K, (3.25)

as desired. �

Corollary 3.3. Assume conditions (i), (ii), and (iii) from Lemma 3.2. The variance of B̂/Ŵ is then

well defined if

K M − 4 > M .

Proof. The variance of an F distribution with degrees of freedom, d1 and d2, is well-defined when

d2 > 4. In our context, this means K(M − 1) < 4. Rearranging the terms we obtain the desired

result. �

Towards a hypothesis test for convergence

Under the normal approximation, Lemma 3.2 gives us an F test statistic and a straightforward

way to control the Type I error.

Remark 3.1. Unlike in many applied contexts where one would use a hypothesis test, we are “root-

ing” for the null hypothesis, not the alternative. This means corrections, such as the Bonferroni

correction, make our test less conservative.

Remark 3.2. To study the alternative hypothesis, we need to understand the behavior of B̂/Ŵ

before stationarity. While the samples may still be approximatively normal, they are no longer

independent due to our initialization requirements (Section 3.3.2). This means we are violating

certain assumptions of the ANOVA setup (albeit having the same null hypothesis).

Unfortunately we cannot control the Type II error (incorrect claims we have converged) because

the chains can be almost stationary. In fact finite chains are never stationary and we leave to a

future analysis how close to stationarity the chains need to be in order to produce useful Monte

Carlo estimators. This can then inform how to calibrate our hypothesis test.
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Tuning K and M

An important tuning parameter for nR̂ is, given a total number of chains, T , how many super

chains should we use? Here we need to balance two considerations:

(i) the more initializations we have, the less likely we are to have all our chains suffer from

the same bias and moreover the more likely we are to have overdispersed initializations.

(ii) we want to minimize the variance of B̂/Ŵ .

Finding formal conditions under which achieve overdispersed initializations is an important open

problem. The variance of B̂/Ŵ can be studied in the limiting case described in Lemma 3.2, i.e. the

chains are stationary and the normal approximation of the rank normalized samples is good.

Lemma 3.4. Assume conditions (i), (ii), and (iii) from Lemma 3.2 and furthermore that 1 < M <

T − 4. Then the solution to the constrained optimization problem

K∗,M∗ = argmin
K,M

Var
B̂

Ŵ
(K,M), subject to K M = T,

is the root of the third degree polynomial in M

ϕ(M) =
2

M − 1
+

1
T − M

−
2(T − 3)

(T − 3)M − T
−

(T − 4)
(T − 4)M − T

,

where K and M are allowed to be in R.

The above root-finding problem admits an analytical solution, albeit a not particularly insightful

one. The proof is straightforward, if algebraically tedious.

In practice, K and M are constrained to be integers and it is straightforward to solve this

optimization problem numerically. Consider the case where T = 128, meaning we want to achieve

an effective sample size of ∼128. Then the optimal number of super-chains is K = 2. Using only

two initialization points however seems overly optimistic, in light of our desire to use overdispersed

initializations. Setting K = 4 only marginally increases the variance of B̂/Ŵ(Table 3.1) and is in
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K 2 4 8 16
Scaled variance 1.00 1.33 2.28 4.27

Table 3.1: Change in the variance of B̂/Ŵ as we deviate from the optimum at K = 2 when K M =
128.

line with current MCMC practices. Experimentally we find setting K = 4 to work well. A more

refine analysis of how tune K and M requires a deeper discussion on how to construct overdispersed

initializations.

3.3.5 Limitations of nR̂

A drawback of nR̂, relative to R̂, is that our proposed diagnostic is more sensitive to poor ini-

tialization. If the initial distribution π0 generates samples which share the same bias relative to

the target distribution, then the per-super-chain Monte Carlo estimators may appear to be in good

agreement even though the chains are still transient. In this scenario Varθ̄(···) does not characterize

well the squared error of our Monte Carlo estimator. This can occur if we run a short warmup

phase or, somewhat equivalently, if the chains mix slowly. R̂’s implicit requirement for long chains

enforces long MCMC runs which increases our chances of overcoming the transient behavior.

Furthermore, comparing different sections of a chain, as is done with split R̂ (Gelman et al. 2013),

can help identify transient behaviors. With short chains, this approach is not an option and we

need additional analysis, e.g. examining traceplots during the warmup phase. Using overdispersed

initialization is generally recommended for any MCMC scheme, a point that deserves further em-

phasis when using nR̂.

A related limitation of nR̂ is that it cannot detect when the chains have converged to a perturbed

stationary distribution. This may happen if we are adapting the parameters of the MCMC kernel

during warmup, and do not freeze the parameters for enough iterations before sampling. nR̂ will

detect that all of the chains are sampling from the same distribution, but not that it differs subtly

from the stationary distribution. This can be avoided by freezing adaptation earlier, but in any case

if we are averaging adaptation signals across many chains, then this undetected bias is likely to be

small, since the influence of any one chain on the adaptation is diminished.
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3.4 Adaptive warmup length

When using a short sampling phase, the computation is dominated by the warmup. Which

warmup length to use depends on the specific distribution we sample from and the MCMC algo-

rithm we use. Current practice amongst modelers is to prespecify the warmup length and then run

a long sampling phase. Only then do we run various diagnostics and if needed adjust the warmup

length. This practice means the warmup length is rarely optimal. In this section, we discuss how

nR̂ can be used to remedy this problem.

3.4.1 Existing method

Zhang et al. (2020) propose a cross-chain warmup scheme for Stan’s dynamic Hamiltonian

Monte Carlo (Betancourt 2018a; Hoffman and Gelman 2014). This warmup strategy shares tun-

ing parameters by pooling information between chains. Note that ChEES-HMC similarly shares

information between chains to tune the sampler. Additionally, rather than run a warmup phase

with a fixed length, the cross-chain warmup uses multiple warmup windows of length w. Stan’s

default warmup length is 1,000 iterations; the proposed window size w = 100 or 200. At the end

of each window, we compute R̂, as well as the bulk and tail ESS (Vehtari et al. 2020) for the un-

normalized log target density using samples from the most recent warmup window. If R̂ < R̂∗ and

ESS > ESS∗, for a prespecified R̂∗ and ESS∗, we end the warmup phase. We would like to build

on this promising approach.

Our main concern is that the values we should use for R̂∗ and ESS∗ depend on both w and the

specifics of our target distribution. How to pick the “right” threshold remains an open question,

even if we can make a sensible guess. nR̂ lets us address this challenge.

3.4.2 Revision using nR̂

We propose the following modification to the adpative warmup scheme. At the end of each

warmup window, we generate 5 sampling iterations and compute nR̂ based on those samples. If
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Figure 3.6: Scaled squared error against nR̂. The yellow line occurs at ε = 0.01. The dotted lines
form a 0.95 coverage for the distribution of the squared error at stationarity and the solid line is
the expectation value (Equation 3.26).

w ≈ 100, computing these additional iterations is relatively cheap. This use of nR̂ aligns with its

natural intent and the window length, w, does not impact our diagnostic.

Additionally, rather than examine the unnormalized log target density, we compute nR̂ for all

quantities of interest. While it is convenient to describe how well the chains are mixing using a

single scalar, convergence in one quantity may not indicate convergence in all quantities we may

care about. We therefore adopt a more conservative approach but one that is more aligned with the

modeler’s goals.

Algorithm 3.1 summarizes the procedure. We denote the MCMC sampler Γ, which admits two

arguments: φ, the tuning parameters of the sampler, and θ, the current state for all chains. If we

draw warmup samples, both φ and θ are updated at each iteration. After each warmup window

of length w, we use s samples to construct Monte Carlo estimators for all Q scalar functions of

interest, denoted f1, f2, · · · , fQ. For each function, we compute nR̂ and check that it is smaller

than 1 + ε . If the number of chains is smaller than the target ESS, we can run the chains for more

iterations after warmup until we achieve the desired ESS.
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Algorithm 3.1: Adaptive warmup length

1 Input: Γ, π0, φ0; K , M . Tuning parameters for MCMC

2 f1, · · · , fQ, w, s, ε , Tmax . Tuning parameters for adaptive warmup

3 for k ∈ {1,2, · · · ,K} do

4 θk
0 ∼ π0

5 Initialize all chains in k th group at θk
0 .

6 Set tuning parameters, φ← φ0.

7 Set chain states, θ ← θ0.

8 end

9 for t ∈ {1,2, · · · ,Tmax} do

10 Run w warmup iterations using Γ(φ, θ).

11 Update φ and θ.

12 Draw θprop for s sampling iterations using Γ(φ, θ).

13 Λ← TRUE . Track convergence condition for all q’s.

14 for q ∈ {1,2, · · · ,Q} do

15 Compute nR̂ for fq(θprop).

16 if (nR̂ > 1 + ε) then

17 Λ← FALSE

18 Break

19 end

20 end

21 if (Λ = TRUE) then

22 Terminate warmup.

23 end

24 end

25 Return: θprop; f1(θprop), ..., fQ(θprop); φ.
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3.5 Experiments

We study the behavior of nR̂ on four target distributions, which we describe below.

Banana (D = 2). See Section 3.2, Equation 3.9.

Logistic regression (D = 25). A logistic regression model on the numerical version of the German

credit dataset (Dua and Graff 2017). There are 24 features and an intercept term. The full model is

θ ∼ Normal(0,1); yn ∼ Bernoulli
(

1
1 + e−θT xn

)
.

Hierarchical model (D = 10). A model describing the effect of an SAT training program, as

measured by the performance of students across 8 schools (Rubin 1981). We estimate the group

mean and the population mean and variance. To avoid a funnel shaped posterior density, we use a

non-centered parameterization:

µ ∼ Normal(5,3);σ ∼ Normal+(0,10); ηn ∼ Normal(0,1);

θn, σ = µ + ηnσ; yn = Normal(θn, σn).

Pharmacokinetics (D = 205). A hierarchical model describing the diffusion of a drug in the

body, using data simulated over 100 patients. We use a one-compartment model with first-order

absorption from the gut, described by the differential equation:

m′gut = −k1mgut; m′cent = k1mgut − k2mcent,

where m is the drug mass in the gut and the central compartment (blood and organs into which
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the drug diffuses profusely). This differential equation admits an analytical solution. Each patient

receives a drug dose at a regular interval. The drug plasma concentration is measured over time.

Our measurement model is, for each patient indexed by n,

yn(t) ∼ logNormal(log mcent(t), σ).

For each patient, we estimate the transmission rates kn
1 and kn

2 . We use a hierarchical prior on

(kn
1, k

n
2) and estimate the population means and variances for both k1 and k2. The model is fitted

to data sampled from the prior. Further details on the model can be found in the Supplementary

Material.

We run Hamiltonian Monte Carlo, using the ChEES adaptive scheme (Hoffman, Radul, and

Sountsov 2021) with 4 super chains, each composed of 32 chains, for a total of 128 chains. We

compute the squared error of our Monte Carlo estimators, using long MCMC runs to calculate with

high precision the correct posterior mean and variance. Invoking the Central Limit Theorem, we

assume θ̄(···) is approximately normally distributed for stationary Markov chains. Then for N = 1,

K M
Varθ
(θ̄(···) − Eθ)2

approx.
∼ χ2

1 . (3.26)

For each model, we compute nR̂ using 5 samples after warmups of varying lengths

` = (10,20,30, ...,100,200,300, ...,1000).

The warmup lengths are not set ahead of time. Rather we use the adaptive warmup scheme in

Section 3.4, starting with a small warmup window, w = 10, and later expanding this window to

w = 100. The initial short windows have no practical use outside this experimental setting, where

they help us monitor the behavior of nR̂ when the squared error is large. Each adaptive warmup

is repeated 10 times. At the end of each window, we record nR̂ and the squared error of Monte

Carlo estimators using a single sample per chain for each dimension. Figure 3.6 plots the squared
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nR̂ ≤ 1.01 nR̂ > 1.01

Banana 0.080 0.593

German Credit 0.042 0.636

Eight Schools 0.053 0.466

Pharmacokinetics 0.036 0.812

Table 3.2: Fraction of estimators with a scaled error above the 97.5th quantile of a χ2
1 distribution

with nR̂ either below or above 1.01. If the chain is stationary, this number should be close to 0.025.

Figure 3.7: Fraction of estimators with a scaled error above the 97.5th quantile of a χ2
1 distribution

for varying values of ε . The high fluctuation for the Banana problem is due to the relatively low
number of points, since the problem is only two-dimensional.

error, scaled by K M/Varθ, against nR̂. As desired, there is good correlation between nR̂ and the

squared error, and our diagnostic is consistently large over regions that admit an important squared

error. When nR̂ < 1.01, the squared error mostly falls within the 0.95 coverage area of the χ2
1

distribution. However the fraction of points which fall above the 97.5th quantile exceeds 0.025

(Table 3.2), which suggests our diagnostics could be more conservative. Figure 3.7 examines the

benefits of using a more conservative threshold.

We now use the Eight School model as an illustrative example to highlight further analysis.

Using a warmup with length 1,000 is amply sufficient, as can be checked by examing the squared

error. In this scenario, nR̂ falls consistently below the proposed threshold, bearing a few excep-
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Figure 3.8: nR̂ and R̂ across all 10 parameters of the Eight Schools after a long warmup. R̂ is
consistently above 2, while nR̂ is below 1.01.

tions, while R̂ produces values larger than what would be considered acceptable (Figure 3.8).

We run the adapative warmup algorithm 50 times, using different seeds both for the initial-

ization and the MCMC. Again, we examine the squared error when using one sample per chain

and find it to agree reasonably well with what we would expect from independent draws from the

stationary distribution. For this relatively simple problem, the warmup length varies between 100

and 1,000 iterations (Figure 3.9), likely because our initialization strongly influences how quickly

the Markov chains reach the stationary distribution. There is no obvious correlation between the

observed squared error and the length of the warmup, suggesting the algorithm does a good job of

gauging when to stop.

3.6 Discussion

nR̂ reproduces many of the desirable properties of R̂ and can be applied to the regime where

we run many chains with a short sampling phase. This makes it a useful tool to monitor MCMC

warmup, without the requirement to run long chains. The utility of nR̂ lies in its ability to check

whether non-independent chains behave as though they were independent, per the notion that a
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Figure 3.9: Squared Error for the Eight Schools over expected squared error across all dimensions.
The warmup length is not prespecified, but obtained using Algorithm 3.1. The solid line is the
expected scaled squared error and the dotted line the 97.5th quantile of the χ2

1 distribution.

proper warmup should “decouple” chains initialized at the same point. We may be able to relax

this condition by starting chains in a super chain within the same region, rather than at the same

point. The potential benefits of such an approach would be to cover more ground earlier during the

warmup phase, which can improve tuning the sampler. We note that there exist many variations on

R̂ which can also motivate further improvements to nR̂.

In the classic MCMC setting, the warmup phase needs to adapt the tuning parameters of the

sampler to insure the Markov chains move efficiently across the parameter space during the sam-

pling phase. That is we want to reduce the autocorrelation of our Markov chains, in order to gener-

ate chains with a large effective sample size. When one sample per chain suffices, autocorrelation

is no longer a concern, which raises the possibility that our warmup phase can be less sophisticated

and ultimately shorter. On the other hand, tuning the sampler well may be a prerequisite to achieve

stationarity and obtain the unavoidable first sample.
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3.8 Appendix (Supplementary Material): Pharmacokinetic model

The one-compartment pharmacokinetic model with first-order absorption from the gut de-

scribes the diffusion of a drug compound inside a patient’s body. Oral administration of a bolus

drug dose induces a discrete change in the drug mass inside the patient’s gut. The drug is then

absorbed into the central compartment, which represents the blood and organs into which the drug

diffuses profusely. This diffusion process is described by the ordinary differential equation:

dmgut

dt
= −k1mgut

dmcent

dt
= k1mgut − k2mcent, (3.27)

which admits the analytical solution, when k1 , k2,

mgut(t) = m0
gut exp(−k1t)

mcent(t) =
exp(−k2t)

k1 − k2

(
m0

gutk1(1 − exp[(k2 − k1)t] + (k1 − k2)m0
cent)

)
. (3.28)

Here m0
gut and m0

cent are the initial conditions at time t = 0.

A patient typically receives multiple doses. To model this, we solve the differential equations

between dosing events, and then update the drug mass in each compartment, essentially resetting

the boundary conditions before we resume solving the differential equations. In our example, this

means adding mdose, the drug mass administered by each dose, to mgut(t) at the time of the dosing

event. We denote x the dosing schedule.

Our measurement model is given by

y(t) ∼ logNormal(mcent(t, x), σ). (3.29)

This is somewhat of a simplification because in practice we measure the drug plasma concentration,
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e.g. using blood sample, not the drug mass and the volume of the central compartment is unknown.

Each patient receives a total of 14 doses, taken every 12 hours. Measurements are taken at times

t = (0.083,0.167,0.25,0.5,0.75,1,1.5,2,3,4,6,8) hours after the 1st, 2nd, and 13th, and before all

other dosing events.

We simulate data for 100 patients and for each patient, indexed by n, we estimate the coeffi-

cients (kn
1, k

n
2). We use a hierarchical prior to pool information between patients and estimate the

population parameters (kpop
1 , kpop

2 ), with a non-centered parameterization. The full Bayesian model

is given by

hyperpriors

kpop
1 ∼ logNormal(log 1,0.1)

kpop
2 ∼ logNormal(log 0.3,0.1)

σ1 ∼ logNormal(log 0.15,0.1)

σ2 ∼ logNormal(log 0.35,0.1)

σ ∼ logNormal(−1,1)

hierarchical priors

ηn
1 ∼ Normal(0,1)

ηn
2 ∼ Normal(0,1)

kn
1 = kpop

1 exp(ηn
1σ1)

kn
2 = kpop

2 exp(ηn
2σ2)

likelihood

yn ∼ logNormal(log mcent(t, kn
1, k

n
2, x), σ).

Note we fit the model on the unconstrained scale, meaning the Markov chains explore the param-
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eter space of, for example, log kpop
1 ∈ R, rather than kpop

1 ∈ R+.
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Chapter 4: Hamiltonian Monte Carlo using an adjoint-differentiated

Laplace approximation

CHARLES C. MARGOSSIAN1, AKI VEHTARI2, DANIEL SIMPSON3, RAJ AGRAWAL4

Gaussian latent variable models are a key class of Bayesian hierarchical models with applica-

tions in many fields. Performing Bayesian inference on such models can be challenging as Markov

chain Monte Carlo algorithms struggle with the geometry of the resulting posterior distribution

and can be prohibitively slow. An alternative is to use a Laplace approximation to marginalize out

the latent Gaussian variables and then integrate out the remaining hyperparameters using dynamic

Hamiltonian Monte Carlo, a gradient-based Markov chain Monte Carlo sampler. To implement

this scheme efficiently, we derive a novel adjoint method that propagates the minimal information

needed to construct the gradient of the approximate marginal likelihood. This strategy yields a

scalable differentiation method that is orders of magnitude faster than state of the art differentia-

tion techniques when the hyperparameters are high dimensional. We prototype the method in the

probabilistic programming framework Stan and test the utility of the embedded Laplace approx-

imation on several models, including one where the dimension of the hyperparameter is ∼6,000.

Depending on the cases, the benefits can include an alleviation of the geometric pathologies that

frustrate Hamiltonian Monte Carlo and a dramatic speed-up.

1Columbia University, Department of Statistics; work partially done while a visiting doctoral student at the De-
partment of Computer Science, Aalto University, Finland

2Aalto University, Department of Computer Science
3University of Toronto, Department of Statistical Sciences
4Massachusetts Institute of Technology, CSAIL
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4.1 Introduction

Latent Gaussian models observe the following hierarchical structure:

φ ∼ π(φ), θ ∼ Normal(0,K(φ)), y ∼ π(y | θ, φ).

Typically, single observations yi are independently distributed and only depend on a linear combi-

nation of the latent variables, that is π(yi | θ, φ) = π(yi | aT
i θ, φ), for some appropriately defined

vectors ai. This general framework finds a broad array of applications: Gaussian processes, spatial

models, and multilevel regression models to name a few examples. We denote θ the latent Gaus-

sian variable and φ the hyperparameter, although we note that in general φ may refer to any latent

variable other than θ. Note that there is no clear consensus in the literature on what constitutes

a “latent Gaussian model”; we use the definition from the seminal work by Rue, Martino, and

Chopin (2009).

We derive a method to perform Bayesian inference on latent Gaussian models, which scales

when φ is high dimensional and can handle the case where π(φ | y) is multimodal, provided the

energy barrier between the modes is not too strong. This scenario arises in, for example, general

linear models with a regularized horseshoe prior (Carvalho, Polson, and Scott 2010) and in sparse

kernel interaction models (Agrawal et al. 2019). The main application for these models is studies

with a low number of observations but a high-dimensional covariate, as seen in genomics.

The inference method we develop uses a gradient-based Markov chain Monte Carlo (MCMC)

sampler, coupled with a Laplace approximation to marginalize out θ. The key to successfully

implementing this scheme is a novel adjoint method that efficiently differentiates the approximate

marginal likelihood. In the case of a classic Gaussian process (Section 4.4), where dim(φ) = 2,

the computation required to evaluate and differentiate the marginal is on par with the GPstuff

package (Vanhatalo et al. 2013), which uses the popular algorithm by Rasmussen and Williams

(2006). The adjoint method is however orders of magnitude faster when φ is high dimensional.

Figure 4.1 shows the superior scalability of the adjoint method on simulated data from a sparse
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Figure 4.1: Wall time to differentiate the marginal density using the adjoint method (Algorithm 4.2)
and, as a benchmark, the method by Rasmussen and Williams (2006) (Algorithm 4.1).

kernel interaction model. We lay out the details of the algorithms and the experiment in Section 4.3.

4.1.1 Existing methods

Bayesian computation is, broadly speaking, split between two approaches: (i) MCMC methods

that approximately sample from the posterior, and (ii) approximation methods in which one finds a

tractable distribution that approximates the posterior (e.g. variational inference, expectation prop-

agation, and asymptotic approximations). The same holds for latent Gaussian models, where we

can consider (i) Hamiltonian Monte Carlo (HMC) sampling (Neal 2012; Betancourt 2018a) and (ii)

approximation schemes such as variational inference (VI) (Blei, Kucukelbir, and McAuliffe 2017)

or marginalizing out the latent Gaussian variables with a Laplace approximation before determin-

istically integrating the hyperparameters (Tierney and Kadane 1986; Rue, Martino, and Chopin

2009).

Hamiltonian Monte Carlo sampling. When using MCMC sampling, the target distribution is

π(θ, φ | y) ∝ π(y | θ, φ)π(θ | φ)π(φ),

and the Markov chain explores the joint parameter space of θ and φ.

HMC is a class of MCMC algorithms that powers many modern probabilistic programming
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languages, including Stan (Carpenter et al. 2017), PyMC3 (Salvatier, Wiecki, and Fonnesbeck

2016), and TensorFlow Probability (Dillon et al. 2017). Its success is both empirically and the-

oretically motivated (e.g. Betancourt et al. 2017) and, amongst other things, lies in its ability to

probe the geometry of the target distribution via the gradient. The algorithm is widely accessible

through a combination of its dynamic variants (Hoffman and Gelman 2014; Betancourt 2018a),

which spare the users the cumbersome task of manually setting the algorithm’s tuning parameters,

and automatic differentiation, which alleviates the burden of calculating gradients by hand (e.g

Margossian 2019; Baydin et al. 2018; Griewank and Walther 2008). There are known challenges

when applying HMC to hierarchical models, because of the posterior distribution’s problematic

geometry (Betancourt and Girolami 2015). In the case of latent Gaussian models, this geometric

grief is often caused by the latent Gaussian variable, θ, and its interaction with φ. Certain sam-

plers, such as Riemannian HMC (Girolami, Calderhead, and Chin 2019; Betancourt 2013) and

semi-separable HMC (Zhang and Sutton 2014), are designed to better handle difficult geometries.

While promising, these methods are difficult to implement, computationally expensive, and to our

knowledge not widely used.

Variational inference. VI proposes to approximate the target distribution, π(θ, φ | y), with a

tractable distribution, q(θ, φ), which minimizes the Kullback-Leibler divergence between the ap-

proximation and the target. The optimization is performed over a pre-defined family of distri-

butions, Q. Adaptive versions, such as black-box VI (Ranganath, Gerrish, and Blei 2014) and

automatic differentiation VI (ADVI) (Kucukelbir et al. 2017), make it easy to run the algorithm.

VI is further made accessible by popular software libraries, including the above-mentioned prob-

abilistic programming languages, and others packages such as GPyTorch for Gaussian processes

(Gardner et al. 2018). For certain problems, VI is more scalable than MCMC, because it can be

computationally much faster to solve an optimization problem than to generate a large number of

samples. There are however known limitations with VI (e.g Blei, Kucukelbir, and McAuliffe 2017;

Yao et al. 2018; Huggins et al. 2020; Dhaka et al. 2020). Of interest here is that Q may not include
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appropriate approximations of the target: mean field or full rank Gaussian families, for instance,

will underestimate variance and settle on a single mode, even if the posterior is multimodal (e.g.

Yao et al. 2018).

Marginalization using a Laplace approximation. The embedded Laplace approximation is a

popular algorithm, and a key component of the R packages INLA (integrated nested Laplace in-

tegration, Rue, Martino, and Chopin 2009; Rue et al. 2017) and TMB (template model builder,

Kristensen et al. 2016), and the GPstuff package (Vanhatalo et al. 2013). The idea is to marginal-

ize out θ and then use standard inference techniques on φ.

We perform the Laplace approximation

π(θ | φ, y) ≈ πG(θ | y, φ) := Normal(θ∗,Σ∗),

where θ∗ matches the mode and [Σ∗]−1 the curvature of π(θ | φ, y). Then, the marginal posterior

distribution is approximated as follows:

π(φ | y) ≈ πG(φ | y) := π(φ)
π(θ∗ | φ)π(y | θ∗, φ)

πG(θ∗ | φ, y)π(y)
.

Once we perform inference on φ, we can recover θ using the conditional distribution πG(θ | φ, y)

and effectively marginalizing φ out. For certain models, this yields much faster inference than

MCMC, while retaining comparable accuracy (Rue, Martino, and Chopin 2009). Furthermore

the Laplace approximation as a marginalization scheme enjoys very good theoretical properties

(Tierney and Kadane 1986).

In the R package INLA, approximate inference is performed on φ, by characterizing π(φ | y)

around its presumed mode. This works well for many cases but presents two limitations: the

posterior must be well characterized in the neighborhood of the estimated mode and it must be

low dimensional, “2–5, not more than 20” (Rue et al. 2017). In one of the examples we study, the

posterior of φ is both high dimensional (∼6000) and multimodal.
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Hybrid methods. Naturally we can use a more flexible inference method on φ such as a standard

MCMC, as discussed by Gómez-Rubio and Rue (2018), and HMC as proposed in GPstuff and

TMB, the latter through its extension TMBStan and AdNuts (automatic differentiation with a No-

U-Turn Sampler (Monnahan and Kristensen 2018)). The target distribution of the HMC sampler

is now πG(φ | y).

To use HMC, we require the gradient of log πG(y | φ) with respect to φ. Much care must be

taken to ensure an efficient computation of this gradient. TMB and GPstuff exemplify two ap-

proaches to differentiate the approximate marginal density. The first uses automatic differentiation

and the second adapts the algorithms in Rasmussen and Williams (2006). One of the main bottle-

necks is differentiating the estimated mode, θ∗. In theory, it is straightforward to apply automatic

differentiation, by brute-force propagating derivatives through θ∗, that is, sequentially differen-

tiating the iterations of a numerical optimizer. But this approach, termed the direct method, is

prohibitively expensive. A much faster alternative is to use the implicit function theorem (e.g Bell

and Burke 2008; Margossian 2019). Given any accurate numerical solver, we can always use the

implicit function theorem to get derivatives, as notably done in the Stan Math Library (Carpenter

et al. 2015) and in TMB’s inverse subset algorithm (Kristensen et al. 2016). One side effect is that

the numerical optimizer is treated as a black box. By contrast, Rasmussen and Williams (2006)

define a bespoke Newton method to compute θ∗, meaning we can store relevant variables from the

final Newton step when computing derivatives. In our experience, this leads to important compu-

tational savings. But overall this method is much less flexible, working well only when φ is low

dimensional and requiring the user to pass the tensor of derivatives, ∂K/∂φ.

4.2 Aim and results of the paper

We improve the computation of HMC with an embedded Laplace approximation. Our imple-

mentation accommodates any covariance matrix K , without requiring the user to specify ∂K/∂φ,

efficiently differentiates log πG(y | φ), even when φ is high dimensional, and deploys dynamic

HMC to perform inference on φ. We introduce a novel adjoint method to differentiate log πG(y |
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φ), build the algorithm in C++, and add it to the Stan language. Our approach combines the Newton

solver of Rasmussen and Williams (2006) with a non-trivial application of automatic differentia-

tion.

Equipped with this implementation, we test dynamic HMC with an embedded Laplace approx-

imation on a range of models, including ones with a high dimensional and multimodal hyperpa-

rameter. We do so by benchmarking our implementation against Stan’s dynamic HMC, which runs

MCMC on both the hyperparameter and the latent Gaussian variable. For the rest of the paper,

we call this standard use of dynamic HMC, full HMC. We refer to marginalizing out θ and using

dynamic HMC on φ, as the embedded Laplace approximation. Another candidate benchmark is

Stan’s ADVI. Yao et al. (2018) however report that ADVI underestimates the posterior variance

and returns a unimodal approximation, even when the posterior is multimodal. We observe a sim-

ilar behavior in the models we examine. For clarity, we relegate most of our analysis on ADVI to

the Supplementary Material.

Our computer experiments identify cases where the benefits of the embedded Laplace approx-

imation, as tested with our implementation, are substantial. In the case of a classic Gaussian

process, with dim(φ) = 2 and dim(θ) = 100, we observe an important computational speed up,

when compared to full HMC. We next study a general linear regression with a sparsity inducing

prior; this time dim(φ) ≈ 6,000 and dim(θ) ≈ 100. Full HMC struggles with the posterior’s geom-

etry, as indicated by divergent transitions, and requires a model reparameterization and extensive

tuning of the sampler. On the other hand, the embedded Laplace approximation evades many of

the geometric problems and solves the approximate problem efficiently. We observe similar results

for a sparse kernel interaction model, which looks at second-order interactions between covariates

(Agrawal et al. 2019). Our results stand in contrast to the experiments presented in Monnahan and

Kristensen (2018), who used a different method to automatically differentiate the Laplace approx-

imation and reported at best a minor speed up. We do however note that the authors investigated

different models than the ones we study here.

In all the studied cases, the likelihood is log-concave. Combined with a Gaussian prior, log-
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concavity guarantees that π(θ | φ, y) is unimodal. Detailed analysis on the error introduced by

the Laplace approximation for log-concave likelihoods can be found in references (e.g Kuss and

Rasmussen 2005; Vanhatalo, Pietiläinen, and Vehtari 2010; Cseke and Heskes 2011; Vehtari et

al. 2016) and are consistent with the results from our computer experiments.

4.3 Implementation for probabilistic programming

In order to run HMC, we need a function that returns the approximate log density of the

marginal likelihood, log πG(y | φ), and its gradient with respect to φ, ∇φ log πG(y | φ). The

user specifies the observations, y, and a function to generate the covariance K , based on input

covariates x and the hyperparameters φ. In the current prototype, the user picks the likelihood,

π(y | θ, φ), from a set of options5: for example, a likelihood arising from a Bernoulli distribution

with a logit link.

Standard implementations of the Laplace approximation use the algorithms in Rasmussen and

Williams (2006, chapter 3 and 5) to compute (i) the mode θ∗ and log πG(y | φ), using a Newton

solver; (ii) the gradient ∇φ log πG(y | φ) (Algorithm 4.1), and (iii) simulations from πG(θ | y, φ).

The major contribution of this paper is to construct a new differentiation algorithm, i.e. item (ii).

4.3.1 Using automatic differentiation in the algorithm of Rasmussen and Williams (2006)

The main difficulty with Algorithm 4.1 from Rasmussen and Williams (2006) is the require-

ment for ∂K/∂φ j at line 8. For classic problems, where K is, for instance, an exponentiated

quadratic kernel, the derivatives are available analytically. This is not the case in general and, in

line with the paradigm of probabilistic programming, we want a method that does not require the

user to specify the tensor of derivatives, ∂K/∂φ.

Automatic differentiation allows us to numerically evaluate ∂K/∂φ based on computer code to

5More likelihoods can be implemented through a C++ class that specifies the first three derivatives of the log-
likelihood.
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Algorithm 4.1: Gradient of the approximate marginal density, πG(y | φ), with respect to
the hyperparameters φ, adapted from algorithm 5.1 by Rasmussen and Williams (2006,
chapter 5). We store and reuse terms computed during the final Newton step, algorithm
3.1 in Rasmussen and Williams (2006, chapter 3).

1 input: y, φ, π(y | θ, φ)

2 saved input from the Newton solver: θ∗, K , W
1
2 , L, a

3 Z ← 1
2 aTθ∗ + log π(y | θ∗, φ) −

∑
log(diag(L))

4 R← W
1
2 LT \ (L \W

1
2 )

5 C ← L \ (W
1
2 K)

6 s2 ← −
1
2diag(diag(K) − diag(CTC))∇3

θ log π(y | θ∗, φ)
7 for j ∈ {1, · · · ,dim(φ)} do

8 K′← ∂K/∂φ j

9 s1 ←
1
2 aT K′a − 1

2 tr(RK′)

10 b← K′∇θ log π(y | θ, φ)
11 s3 ← b − KRb

12 ∂
∂φ j

π(y | φ) ← s1 + sT
2 s3

13 end

14 return ∇φ log πG(y | φ)
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evaluate K . To do this, we introduce the map K

K : Rp → Rn(n+1)/2

φ→ K,

where p is the dimension of φ and n that of θ. To obtain the full tensor of derivatives, we require

either p forward mode sweeps or n(n + 1)/2 reverse mode sweeps. Given the scaling, we favor

forward mode and this works well when p is small. However, once p becomes large, this approach

is spectacularly inefficient.

4.3.2 Adjoint method to differentiate the approximate log marginal density

To evaluate the gradient of a composite map, it is actually not necessary to compute the full

Jacobian matrix of intermediate operations. This is an important, if often overlooked, property

of automatic differentiation and the driving principle behind adjoint methods (e.g Errico 1997;

Margossian and Betancourt 2022). This idea motivates an algorithm that does not explicitly con-

struct ∂K/∂φ, a calculation that is both expensive and superfluous. Indeed, it suffices to evaluate

ΩT∂K/∂φ for the correct cotangent matrix, ΩT , an operation we can do in a single reverse mode

sweep of automatic differentiation.

Theorem 4.1. Let log πG(y | φ) be the approximate log marginal density in the context of a latent

Gaussian model. Let a be defined as in the Newton solver by Rasmussen and Williams (2006,

chapter 3), and let R and s2 be defined as in Algorithm 4.1. Then

∇φ log πG(y | φ) = ΩT ∂K
∂φ

,

where the gradient is with respect to φ and

Ω
T =

1
2

aaT −
1
2

R + (s2 + RKs2)[∇θ log π(y | θ, φ)]T .
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The proof follows from Algorithm 4.1 and noting that all the operations in ∂K/∂φ j are lin-

ear. We provide the details in the Supplementary Material. Armed with this result, we build

Algorithm 4.2, a method that combines the insights of Rasmussen and Williams (2006) with the

principles of adjoint methods.

Algorithm 4.2: Gradient of the approximate marginal log density, log πG(y | φ), with
respect to the hyperparameters, φ, using reverse mode automatic differentiation and the-
orem 4.1.

1 input: y, φ, π(y | θ, φ)

2 Do lines 2 - 6 of Algorithm 4.1.

3 Initiate an expression graph for automatic differentiation with φv = φ.

4 Kv ← K(φv)

5 ΩT ← 1
2 aaT − 1

2 R + (s2 + RKs2)[∇θ log π(y | θ, φ)]T

6 Do a reverse sweep over K , with ΩT as the initial cotangent to obtain ∇φ log πG(y | φ).
7 return: ∇φ log πG(y | φ).

Figure 4.1 shows the time required for one evaluation and differentiation of log πG(y | φ) for

the sparse kernel interaction model developed by Agrawal et al. (2019) on simulated data. The

covariance structure of this model is nontrivial and analytical derivatives are not easily available.

We simulate a range of data sets for varying dimensions, p, of φ. For low dimensions, the difference

is small; however, for p = 200, Algorithm 4.2 is more than 100 times faster than Algorithm 4.1,

requiring 0.009 s, instead of 1.47 s.

4.4 Gaussian process with a Poisson likelihood

We fit the disease map of Finland by Vanhatalo, Pietiläinen, and Vehtari (2010) which models

the mortality count across the country. The data is aggregated in n = 911 grid cells. We use 100

cells, which allows us to fit the model quickly both with full HMC and HMC using an embedded

Laplace approximation. For the ith region, we have a 2-dimensional coordinate xi, the counts of
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deaths yi, and the standardized expected number of deaths, yi
e. The full latent Gaussian model is

(ρ,α) ∼ π(ρ,α), θ ∼ Normal(0,K(α, ρ, x)), yi ∼ Poisson(yi
eeθi ),

where K is an exponentiated quadratic kernel, α is the marginal standard deviation and ρ the

characteristic length scale. Hence φ = (α, ρ).

Fitting this model with MCMC requires running the Markov chains over α, ρ, and θ. Because

the data is sparse — one observation per group — the posterior has a funnel shape which can

lead to biased MCMC estimates (Neal 2003; Betancourt and Girolami 2015). A useful diagnostic

for identifying posterior shapes that challenge the HMC sampler is divergent transitions, which

occur when there is significant numerical error in the computation of the Markov chain trajectory

(Betancourt 2018a).

To remedy these issues, we reparameterize the model and adjust the target acceptance rate, δa.

δa controls the precision of HMC, with the usual trade-off between accuracy and speed. For well

behaved problems, the optimal value is 0.8 (Betancourt and Girolami 2015) but posteriors with

highly varying curvature require a higher value. Moreover, multiple attempts at fitting the model

must be done before we correctly tune the sampler and remove all the divergent transitions. See

the Supplementary Material for more details.

An immediate benefit of the embedded Laplace approximation is that we marginalize out θ and

only run HMC on α and ρ, a two-dimensional and typically well behaved parameter space. In the

case of the disease map, we do not need to reparameterize the model, nor adjust δa.

We fit the models with both methods, using 4 chains, each with 500 warmup and 500 sampling

iterations. A look at the marginal distributions of α, ρ, and the first two elements of θ suggests the

posterior samples generated by full HMC and the embedded Laplace approximation are in close

agreement (Figure 4.2). With a Poisson likelihood, the bias introduced by the Laplace approxima-

tion is small, as shown by Vanhatalo, Pietiläinen, and Vehtari (2010). We benchmark the Monte

Carlo estimates of both methods against results from running 18,000 MCMC iterations. The em-
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Figure 4.2: (Up) Posterior samples obtained with full HMC and the embedded Laplace approxi-
mation when fitting the disease map. (Down) Error when estimating the expectation value against
wall time. Unreported in the figure is that we had to fit full HMC twice before obtaining good
tuning parameters.

bedded Laplace approximations yields comparable precision, when estimating expectation values,

and is an order of magnitude faster (Figure 4.2). In addition, we do not need to tune the algorithm

and the MCMC warmup time is much shorter (∼10 seconds against ∼200 seconds for full HMC).

4.5 General linear regression model with a regularized horseshoe prior

Consider a regression model with n observations and p covariates. In the “p � n” regime, we

typically need additional structure, such as sparsity, for accurate inference. The horseshoe prior

(Carvalho, Polson, and Scott 2010) is a useful prior when it is assumed that only a small portion of

the regression coefficients are non-zero. Here we use the regularized horseshoe prior by Piironen

and Vehtari (2017). The horseshoe prior is parameterized by a global scale term, the scalar τ, and

local scale terms for each covariate, λ j , j = 1, . . . , p. Consequently the number of hyperparameters

is O(p).

To use the embedded Laplace approximation, we recast the regularized linear regression as a

latent Gaussian model. The benefit of the approximation is not a significant speedup, rather an

improved posterior geometry, due to marginalizing θ out. This means we do not need to repa-

rameterize the model, nor fine tune the sampler. To see this, we examine the genetic microarray

classification data set on prostate cancer used by Piironen and Vehtari (2017) and fit a regression
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Figure 4.3: Expectation value for the probability of developing prostate cancer, as estimated by
full HMC and HMC using an embedded Laplace approximation.

model with a Bernoulli distribution and a logit link. Here, dim(θ) = 102 and dim(φ) = 5,966.

We use 1,000 iterations to warm up the sampler and 12,000 sampling iterations. Tail quantiles,

such as the 90th quantile, allow us to identify parameters which have a small local shrinkage and

thence indicate relevant covariates. The large sample size is used to reduce the Monte Carlo error

in our estimates of these extreme quantiles.

Fitting this model with full HMC requires a fair amount of work: the model must be reparam-

eterized and the sampler carefully tuned, after multiple attempts at a fit. We use a non-centered

parameterization, set δa = 0.999 (after attempting δa = 0.8 and δa = 0.99) and do some additional

adjustments. Even then we obtain 13 divergent transitions over 12,000 sampling iterations. The

Supplementary Material describes the tuning process in all its thorny details. By contrast, running

the embedded Laplace approximation with Stan’s default tuning parameters produces 0 divergent

transitions. Hence the approximate problem is efficiently solved by dynamic HMC. Running ADVI

on this model is also straightforward.

Table 4.1 shows the covariates with the highest 90th quantiles, which are softly selected by

full HMC, the embedded Laplace approximation and ADVI. For clarity, we exclude ADVI from

the remaining figures but note that it generates, for this particular problem, strongly biased infer-

81



(full) HMC 2586 1816 4960 4238 4843 3381

HMC + Laplace 2586 1816 4960 4647 4238 3381

ADVI 1816 2416 4284 2586 5279 4940

Table 4.1: Top six covariate indices, i, with the highest 90th quantiles of log λi for the general
linear model with a regularized horseshoe prior. The first two methods are in good agreement;
ADVI selects different covariates, in part because it approximates the multimodal posterior with a
unimodal distribution (see the Supplementary Material).
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Figure 4.4: (Up) Posterior samples obtained with full HMC and HMC using an embedded Laplace
approximation when fitting a general linear regression with a regularized horseshoe prior. (Down)
Error when estimating various quantities of interest against wall time. E stands for “expectation”
and Q90, “90th quantile”. Unreported in the figure is that we had to run full HMC four times before
obtaining reasonable tuning parameters.

ence; more details can be found in the Supplementary Material. Figure 4.3 compares the expected

probability of developing cancer. Figure 4.4 compares the posterior samples and the error when

estimating various quantities of interest, namely (i) the expectation value of the global shrinkage,

τ, and the slab parameter, caux; and (ii) the 90th quantile of two local shrinkage parameters. As a

benchmark we use estimates obtained from 98,000 MCMC iterations.

The Laplace approximation yields slightly less extreme probabilities of developing cancer

than the corresponding full model. This behavior is expected for latent Gaussian models with

a Bernoulli observation model, and has been studied in the cases of Gaussian processes and Gaus-

sian random Markov fields (e.g Kuss and Rasmussen 2005; Cseke and Heskes 2011; Vehtari et

al. 2016). While introducing a bias, the embedded Laplace approximation yields accuracy compa-
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rable to full HMC when evaluating quantities of interest.

4.6 Sparse kernel interaction model

A natural extension of the general linear model is to include interaction terms. To achieve

better computational scalability, we can use the kernel interaction trick by Agrawal et al. (2019)

and build a sparse kernel interaction model (SKIM), which also uses the regularized horseshoe

prior by Piironen and Vehtari (2017). The model is an explicit latent Gaussian model and uses

a non-trivial covariance matrix. The full details of the model are given in the Supplementary

Material.

When fitting the SKIM to the prostate cancer data, we encounter similar challenges as in the

previous section: ∼150 divergent transitions with full HMC when using Stan’s default tuning pa-

rameters. The behavior when adding the embedded Laplace approximation is much better, al-

though there are still ∼3 divergent transitions,6 which indicates that this problem remains quite

difficult even after the approximate marginalization. We also find large differences in running

time. The embedded Laplace approximation runs for ∼10 hours, while full HMC takes ∼20 hours

with δa = 0.8 and ∼50 hours with δa = 0.99, making it difficult to tune the sampler and run our

computer experiment.

For computational convenience, we fit the SKIM using only 200 covariates, indexed 2500 -

2700 to encompass the 2586th covariate which we found to be strongly explanatory. This allows us

to easily tune full HMC without altering the takeaways of the experiment. Note that the data here

used is different from the data we used in the previous section (since we only examine a subset of

the covariates) and the marginal posteriors should therefore not be compared directly.

As in the previous section, we generate 12,000 posterior draws for each method. For full

HMC we obtain 36 divergent transitions with δa = 0.8 and 0 with δa = 0.99. The embedded

Laplace approximation produces 0 divergences with δa = 0.8. Table 4.2 shows the covariates

which are softly selected. As before, we see a good overlap between full HMC and the embedded
6We do our preliminary runs using only 4000 sampling iterations. The above number are estimated for 12000

sampling iterations. The same holds for the estimated run times.
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Figure 4.5: (Up) Samples obtained with full HMC and HMC using an embedded Laplace approxi-
mation when fitting the SKIM. (Down) Error when estimating various quantities of interest against
wall time. E stands for “expectation” and Q90, “90th quantile”. Unreported in the figure is that we
had to run full HMC twice before obtaining reasonable tuning parameters.

(full) HMC 2586 2660 2679 2581 2620 2651

HMC + Laplace 2586 2679 2660 2581 2620 2548

ADVI 2586 2526 2106 2550 2694 2166

Table 4.2: Top six covariate indices, i, with the highest 90th quantiles of log λi for the SKIM.

Laplace approximation, and mostly disagreeing results from ADVI. Figure 4.5 compares (i) the

posterior draws of full HMC and the embedded Laplace approximation, and (ii) the error over time,

benchmarked against estimates from 98,000 MCMC iterations, for certain quantities of interest.

We obtain comparable estimates but note that the Laplace approximation introduces a bias, which

becomes more evident over longer runtimes.

4.7 Discussion

Equipped with a scalable and flexible differentiation algorithm, we expand the regime of mod-

els to which we can apply the embedded Laplace approximation. HMC allows us to perform

inference even when φ is high dimensional and multimodal, provided the energy barrier is not too

strong. In the case where dim(θ) � dim(φ), the approximation also yields a dramatic speedup.

When dim(θ) � dim(φ), marginalizing θ out can still improve the geometry of the posterior, sav-
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ing the user time otherwise spent tuning the sampling algorithm. However, when the posterior is

well-behaved, the approximation may not provide any benefit.

Our next step is to further develop the prototype for Stan. We are also aiming to incorporate

features that allow for a high performance implementation, as seen in the packages INLA, TMB,

and GPstuff. Examples include support for sparse matrices required to fit latent Markov random

fields, parallelization and GPU support.

We also want to improve the flexibility of the method by allowing users to specify their own

likelihood. TMB provides this flexibility but in our view two important challenges persist. Recall

that unlike full HMC, which only requires first-order derivatives, the embedded Laplace approx-

imation requires the third-order derivative of the likelihood (but not of the other components in

the model). It is in principle possible to apply automatic differentiation to evaluate higher-order

derivatives and most libraries, including Stan, support this; but, along with feasibility, there is

a question of efficiency and practicality (e.g. Betancourt 2018b): the automated evaluation of

higher-order derivatives is often prohibitively expensive. The added flexibility also burdens us

with more robustly diagnosing errors induced by the approximation. There is extensive literature

on log-concave likelihoods but less so for general likelihoods. Future work will investigate diag-

nostics such as importance sampling (Vehtari et al. 2019), leave-one-out cross-validation (Vehtari

et al. 2016), and simulation based calibration (Talts et al. 2020).
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4.8 Appendix (Supplementary Material)

We review the Newton solver proposed by Rasmussen and Williams (2006) and prove theo-

rem 4.1, the main result required to do build an adjoint method for the embedded Laplace ap-

proximation. We next present our prototype code and provide details for the models used in our

computer experiments.

4.8.1 Newton solver for the embedded Laplace approximation

Algorithm 4.3: Newton solver for the embedded Laplace approximation Rasmussen and
Williams 2006, chapter 3

1 input: K , y, π(y | θ, φ)

2 θ∗ ← θ0 . initialization

3 while convergence is not achieved do

4 W ← −∇θ∇θ log π(y | θ∗, φ)
5 L ← Cholesky(I +W

1
2 KW

1
2 )

6 b← Wθ∗ + ∇θ log π(y | θ∗, φ)
7 a← b −W

1
2 LT \ (L \ (W

1
2 Kb))

8 θ∗ ← Ka

9 end

10 log π(y | φ) ← −1
2 aTθ∗ + log π(y | θ∗, φ) −

∑
i log Lii

11 return: θ∗, log πG(y | φ)

Algorithm 4.3 is a transcription of the Newton method by Rasmussen and Williams (2006,
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chapter 3) using our notation. As a convergence criterion, we use the change in the objective

function between two iterations

∆ log π(θ | y, φ) ≤ ε

for a specified ε . This is consistent with the approach used in GPStuff (Vanhatalo et al. 2013).

We store the following variables generated during the final Newton step to use them again when

computing the gradient: θ∗, K , W
1
2 , L, and a. This avoids redundant computation and spares us an

expensive Cholesky decomposition.

4.8.2 Building the adjoint method

To compute the gradient of the approximate log marginal with respect to φ, ∇ log πG(y | φ), we

exploit several important principles of automatic differentiation. While widely used in statistics

and machine learning, these principles remain arcane to many practitioners and deserve a brief

review. We will then construct the adjoint method (theorem 4.1 and algorithm 4.2) as a correction

to algorithm 4.1.

Automatic differentiation

Given a composite map

f = f L ◦ f L−1 ◦ ... f 1,

the chain rule teaches us that the corresponding Jacobian matrix observes a similar decomposition:

J = JL · JL−1 · ... · J1.

Based on computer code to calculate f , a forward mode sweep automatic differentiation numeri-

cally evaluates the action of the Jacobian matrix on the initial tangent u, or directional derivative
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J · u. Extrapolating from the chain rule

J · u = JL · JL−1 · ... · J3 · J2 · J1 · u

= JL · JL−1 · ... · J3 · J2 · u1

= JL · JL−1 · ... · J3 · u2

...

= JL · uL−1,

where the ul’s verify the recursion relationship

u1 = J1 · u,

ul = Jl · ul−1.

If our computation follows the steps outlined above we never need to explicitly compute the full Ja-

cobian matrix, Jl , of an intermediate function, f l ; rather we only calculate a sequence of Jacobian-

tangent products. Similarly a reverse mode sweep evaluates the contraction of the Jacobian matrix

with a cotangent, wT , yielding wT J, by computing a sequence cotangent-Jacobian products.

Hence, in the case of the embedded Laplace approximation, where

K : φ → K

Rp → R(n+1)n/2

is an intermediate function, we do not need to explicitly compute ∂K/∂φ but only wT∂K/∂φ for

the appropriate cotangent vector. This type of reasoning plays a key role when differentiating

functionals of implicit functions – for example, probability densities that depend on solutions to

ordinary differential equations – and leads to so-called adjoint methods (e.g. Errico 1997).
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Derivation of the adjoint method

In this section we provide a proof of theorem 4.1. As a starting point, assume algorithm 4.1 is

valid. The proof can be found in Rasmussen and Williams (2006, chapter 5). The key observation

is that all operations performed on
∂K
∂φ j

are linear. Algorithm 1 produces a map

Z : ∂K/∂φ j →
∂

∂φ j
π(y | φ)

: Rn×n → R,

and constructs the gradient one element at a time. By linearity,

∂

∂φ j
Z(K) = Z

(
∂K
∂φ j

)
.

Thus an alternative approach to compute the gradient is to calculate the scalar Z(K) and then

use a single reverse mode sweep of automatic differentiation, noting that Z is an analytical func-

tion. This produces Algorithm 4.4. At this point, the most important is done in order to achieve

Algorithm 4.4: Gradient of the approximate marginal log density, log πG(y | φ), with
respect to the hyperparameters, φ, using reverse mode automatic differentiation

1 input: y, φ, π(y | θ, φ)

2 Do lines 2 - 6 of Algorithm 2.

3 Initiate an expression tree for automatic differentiation with φv = φ.

4 Kv ← K(φv)

5 z ←Z(Kv)

6 Do a reverse-sweep over z to obtain ∇φ log π(y | φ).
7 return: ∇φ log π(y | φ).

scalability: we no longer explicitly compute ∂K/∂φ and are using a single reverse mode sweep.
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Automatic differentiation, for all its relatively cheap cost, still incurs some overhead cost.

Hence, where possible, we still want to use analytical results to compute derivatives. In partic-

ular, we can analytically work out the cotangent

Ω
T :=

∂z
∂K

.

For the following calculations, we use a lower case, ki j and ri j , to denote the (i j)th element respec-

tively of the matrices K and R.

Consider

Z(K) = s1 + sT
2 s3,

where, unlike in Algorithm 1, s1 and s3 are now computed using K , not ∂K/∂φ j . We have

s1 =
1
2

aT Ka −
1
2

tr(RK).

Then

∂

∂ki′ j ′
aT Ka =

∂

∂ki′ j ′

∑
i

∑
j

ai ki ja j = ai′a j ′,

and

∂

∂ki′ j ′
tr(RK) =

∂

∂ki′ j ′

∑
l

ril kli = r j ′i′ .

Thus

∂s1
∂K
=

1
2

aaT −
1
2

RT .
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For convenience, denote l = ∇θ log π(y | θ, φ). We then have

b = Kl,

s3 = b − K̃Rb = (I − K̃R)b,

where K̃ = K , but is maintained fixed, meaning we do not propagate derivatives through it. Let

Ã = I − K̃R and let ãi j denote the (i, j)th element of Ã. Then

sT
2 s3 =

∑
i

(s2)i

(∑
j

ãi j

∑
m

k jmlm

)
.

Thus

∂

∂ki′ j ′
sT

2 s3 =
∑

i

(s2)i ãii′l j ′ = l j ′
∑

i

(s2)i ãii′,

where the sum term is the (i′)th element of Ãs2. The above expression then becomes

∂

∂K
sT

2 s3 = Ãs2lT = s2lT − KRs2lT .

Combining the derivative for s1 and sT
2 s3 we obtain

Ω
T =

1
2

aaT −
1
2

R + (s2 + RKs2)[∇θ log π(y | θ, φ)]T,

as prescribed by Theorem 4.1. This result is general, in the sense that it applies to any covariance

matrix, K , and likelihood, π(y | θ, φ). Our preliminary experiments, on the SKIM, found that

incorporating the analytical cotangent, ΩT, approximately doubles the differentiation speed.

4.8.3 Computer code

The code used in this work is open source and detailed in this section.
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Prototype Stan code

The Stan language allows users to specify the joint log density of their model. This is done

by incrementing the variable target. We add a suite of functions, which return the approximate

log marginal density, log πG(y | φ). Hence, the user can specify the log joint distribution by incre-

menting target with log πG(y | φ) and the prior log π(φ). A call to the approximate marginal

density looks as follows:

target +=

laplace_marginal_*_lpmf (y | n, K, phi, x, delta,

delta_int, theta0);

The * specifies the obervation model, typically a distribution and a link function, for example

bernoulli_logit or poisson_log. The suffix lpmf is used in Stan to denote a log pos-

terior mass function. y and n are sufficient statistics for the latent Gaussian variable, θ; K is

a function that takes in arguments phi, x, delta, and delta_int and returns the covariance

matrix; and theta0 is the initial guess for the Newton solver, which seeks the mode of π(θ | φ, y).

Moreover, we have

• y: a vector containing the sum of counts/successes for each element of θ,

• n: a vector with the number of observation for each element of θ,

• K: a function defined in the functions block, with the signature (vector, data matrix,

data real[], data int[]) ==> matrix. Note that only the first argument may

be used to pass variables which depend on model parameters, and through which we propa-

gate derivatives. The term data means an argument may not depend on model parameters.

• phi: the vector of hyperparameters,

• x: a matrix of data. For Gaussian processes, this is the coordinates, and for the general linear

regression, the design matrix,
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• delta: additional real data,

• delta_int: additional integer data,

• theta0: a vector of initial guess for the Newton solver.

It is also possible to specify the tolerance of the Newton solver. This structure is consistent with

other higher-order functions in Stan, such as the algebraic solver and the ordinary differential equa-

tion solvers. It gives users flexibility when specifying K , but we recognize it is cumbersome. One

item on our to-do list is to use variadic arguments, which remove the constraints on the signature of

K, and allows users to pass any combination of arguments to K through laplace_marignal_*_lpmf.

For each observation model, we implement a corresponding random number generating func-

tion, with a call

theta = laplace_marginal_*_rng (y, n, K, phi, x, delta,

delta_int, theta0);

This generates a random sample from πG(θ | y, φ). This function can be used in the generated

quantities blocks and is called only once per iteration – in contrast with the target function which

is called and differentiated once per integration step of HMC. Moreover the cost of generating θ is

negligible next to the cost evaluating and differentiating log π(y | φ) multiple times per iteration.

The interested reader may find a notebook with demo code, including R scripts and Stan files, at

https://github.com/charlesm93/StanCon2020, as part of the 2020 Stan Conference

(Margossian et al. 2020a).

C++ code

We incorporate the Laplace suite of functions inside the Stan-math library, a C++ library for au-

tomatic differentiation (Carpenter et al. 2015). The library is open source and available on GitHub,

https://github.com/stan-dev/math. The prototype used in this paper exists on the
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branch try-laplace_approximation27. The code is structured around a main function

laplace_approximation (likelihood, K_functor, phi, x, delta,

delta_int, theta0);

with

• likelihood: a class constructed using y and n, which returns the log density, as well as

its first, second, and third order derivatives.

• K_functor: a functor that computes the covariance matrix, K

• ...: the remaining arguments are as previously described.

A user can specify a new likelihood by creating the corresponding class, meaning the C++ code is

expandable.

To expose the code to the Stan language, we use Stan’s new OCaml transpiler, stanc3, https:

//github.com/stan-dev/stanc3 and again the branch try-laplace_approximation2.

Important note: the code is prototypical and currently not merged into Stan’s release or devel-

opment branch.

Code for the computer experiment

The code is available on the GitHub public repository, https://github.com/charlems93/

laplace_manuscript.

We make use of two new prototype packages: CmdStanR (https://mc-stan.org/cmdstanr/)

and posterior (https://github.com/jgabry/posterior).

4.8.4 Tuning dynamic Hamiltonian Monte Carlo

In this article, we use the dynamic Hamiltonian Monte Carlo sampler described by Betancourt

(2018a) and implemented in Stan. This algorithm builds on the No-U Turn Sampler by Hoffman
7Our first prototype is was on the branch try-laplace_approximation, and was used to conduct the here

presented computer experiment. The new branch modifies the functions’ signatures to be more consistent with the
Stan language. In this Supplement, we present the new signatures.
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and Gelman (2014), which adaptively tunes the sampler during a warmup phase. Hence for most

problems, the user does not need to worry about tuning parameters. However, the models pre-

sented in this article are challenging and the sampler requires careful tuning, if we do not use the

embedded Laplace approximation.

The main parameter we tweak is the target acceptance rate, δa. To run HMC, we need to

numerically compute physical trajectories across the parameter space by solving the system of dif-

ferential equations prescribed by Hamilton’s equations of motion. We do this using a numerical

integrator. A small step size, δ, makes the integrator more precise but generates smaller trajec-

tories, which leads to a less efficient exploration of the parameter space. When we introduce too

much numerical error, the proposed trajectory is rejected. Adapt delta, δa ∈ (0,1), sets the target

acceptance rate of proposed trajectories. During the warmup, the sampler adjusts δ to meet this

target. For well-behaved problems, the optimal value of δa is 0.8 (Betancourt and Girolami 2015).

It should be noted that the algorithm does not necessarily achieve the target set by δa during

the warmup. One approach to remedy this issue is to extend the warmup phase; specifically the

final fast adaptation interval or term buffer (see Hoffman and Gelman 2014; Stan development

team 2020). By default, the term buffer runs for 50 iterations (when running a warmup for 1,000

iterations). Still, making the term buffer longer does not guarantee the sampler attains the target

δa. There exist other ways of tuning the algorithm, but at this points, the technical burden on the

user is already significant. What is more, probing how well the tuning parameters work usually

requires running the model for many iterations.

4.8.5 Automatic differentiation variational inference

ADVI automatically derives a variational inference algorithm, based on a user specified log

joint density. Hence we can use the same Stan file we used for full HMC and, with the appropriate

call, run ADVI instead of MCMC. The idea behind ADVI is to approximate the posterior over

the unconstrained space using a Gaussian distribution, either with a diagonal covariance matrix

– leading to a mean-field approximation – or with a full rank covariance matrix. The details of
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this procedure are described in Kucukelbir et al. 2017. Compared to full HMC, ADVI can be

much faster, but in general it is difficult to assess how well the variational approximation describes

the target posterior distribution without using an expensive benchmark (Yao et al. 2018; Huggins

et al. 2020). Furthermore, it can be challenging to assess the convergence of ADVI (Dhaka et

al. 2020).

To run ADVI, we use the Stan file with which we ran full HMC. We depart from the default tun-

ing parameters by decreasing the learning rate η to 0.1, adjusting the tolerance, rel_tol_obj,

and increasing the maximum number of iterations to 100,000. Our goal is to improve the accuracy

of the optimizer as much as possible, while insuring that convergence is reached.

We compare the samples drawn from the variational approximation to samples drawn from

full HMC in Figures 4.6, 4.7 and 4.8. For the studied examples, we find the approximation to

be not very satisfactory, either because it underestimates the posterior variance, does not capture

the skewness of the posterior distribution, or returns a unimodal approximation when in fact the

posterior density is multimodal. These are all features which cannot be captured by a Gaussian over

the unconstrained scale. Naturally, a different choice for Q could lead to better inference. Using

a custom VI algorithm is however challenging, as we need to derive a useful variational family

and hand-code the inference algorithm, rather than rely on the implementation in a probabilistic

programming language.

4.8.6 Model details

We review the models used in our computer experiments and point the readers to the relevant

references.

Disease map

The disease map uses a Gaussian process with an exponentiated squared kernel,

k(xi, x j) = α
2 exp

(
−
(xi − x j)

T (xi − x j)

ρ2

)
.
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The full latent Gaussian model is

ρ ∼ invGamma(aρ, bρ),

α ∼ invGamma(aα, bα),

θ ∼ Normal(0,K(α, ρ, x)),

yi ∼ Poisson(yi
eeθi ),

where we put an inverse-Gamma prior on ρ and α.

When using full HMC, we construct a Markov chain over the joint parameter space (α, ρ, θ). To

avoid Neal’s infamous funnel (Neal 2003) and improve the geometry of the posterior distribution,

it is possible to use a non-centered parameterization:

(ρ,α) ∼ π(ρ,α),

z ∼ Normal(0, In×n),

L = Cholesky decompose(K),

θ = Lz,

yi ∼ Poisson(yi
eeθi ).

The Markov chain now explores the joint space of (α, ρ, z) and the θ’s are generated by transform-

ing the z’s. With the embedded Laplace approximation, the Markov chain only explores the joint

space (α, ρ).

To run ADVI, we use the same Stan file as for full HMC and set tol_rel_obj to 0.005.

Regularized horseshoe prior

The horseshoe prior (Carvalho, Polson, and Scott 2010) is a sparsity inducing prior that intro-

duces a global shrinkage parameter, τ, and a local shrinkage parameter, λi for each covariate slope,

βi. This prior operates a soft variable selection, effectively favoring βi ≈ 0 or βi ≈ β̂i, where β̂i
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Figure 4.6: Samples obtained with full HMC and sampling from the variational approximation
produced by ADVI when fitting the disease map. Unlike the embedded Laplace approximation,
ADVI strongly disagrees with full HMC.

is the maximum likelihood estimator. Piironen and Vehtari (2017) add another prior to regularize

unshrunk βs, Normal(0, c2), effectively operating a “soft-truncation” of the extreme tails.

Details on the prior. For computational stability, the model is parameterized using caux, rather

than c, where

c = sslab
√

caux

with sslab the slab scale. The hyperparameter is φ = (τ, caux, λ) and the prior

λi ∼ Studentt(νlocal,0,1),

τ ∼ Studentt(νglobal,0, sglobal),

caux ∼ invΓ(sdf/2, sdf/2),

β0 ∼ Normal(0, c2
0).

The prior on λ independently applies to each element, λi.

Following the recommendation by Piironen and Vehtari (2017), we set the variables of the pri-

ors as follows. Let p be the number of covariates and n the number of observations. Additionally,

let p0 be the expected number of relevant covariates – note this number does not strictly enforce

the number of unregularized βs, because the priors have heavy enough tails that we can depart
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from p0. For the prostate data, we set p0 = 5. Then

sglobal =
p0

√
n(p − p0)

,

νlocal = 1,

νglobal = 1,

sslab = 2,

sdf = 100,

c0 = 5.

Next we construct the prior on β,

βi ∼ Normal(0, τ2λ̃2
i ),

where

λ̃2
i =

c2λ2
i

c2 + τ2λ2
i

.

Formulations of the data generating process

The data generating process is

φ ∼ π(φ),

β0 ∼ Normal(0, c2
0),

β ∼ Normal(0,Σ(φ)),

y ∼ Bernoulli_logit(β0 + Xβ),
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or, equivalently,

φ ∼ π(φ),

θ ∼ Normal(0, c2
0 In×n + XΣ(φ)XT ),

y ∼ Bernoulli_logit(θ).

For full HMC, we use a non-centered parameterization of the first formulation, much like

we did for the disease map. The embedded Laplace approximation, as currently implemented,

requires the second formulation, which is mathematically more convenient but comes at the cost

of evaluating and differentiating K = c2In×n + XΣ(φ)XT . In this scenario, the main benefit of the

Laplace approximation is not an immediate speed-up but an improved posterior geometry, due to

marginalizing θ (and thus implicitly β and β0) out. This means we do not need to fine tune the

sampler.

Fitting the model with full HMC. This section describes how to tune full HMC to fit the model

at hand. Some of the details may be cumbersome to the reader. But the takeaway is simple: tuning

the algorithm is hard and can be a real burden for the modeler.

Using a non-centered parameterization and with Stan’s default parameters, we obtain ∼150

divergent transitions8. We increase the target acceptance rate to δa = 0.99 but find the sampler

now produces 186 divergent transitions. A closer inspection reveals the divergences all come from

a single chain, which also has a larger adapted step size, δ. The problematic chain also fails to

achieve the target acceptance rate. These results are shown in Table 4.3. From this, it seems

increasing δa yet again may not provide any benefits. Instead we increase the term buffer from

50 iterations to 350 iterations. With this setup, we however obtain divergent transitions across all

chains.

This outcome indicates the chains are relatively unstable and emphasizes how difficult it is,

8To be precise, we here did a preliminary run using 4000 sampling iterations and obtained 50 divergent transitions
(so an expected 150 over 12000 sampling iterations).
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Chain Step size Acceptance rate Divergences

1 0.0065 0.99 0

2 0.0084 0.90 186

3 0.0052 0.99 0

4 0.0061 0.99 0

Table 4.3: Adapted tuning parameters across 4 Markov chains with δa = 0.99.

for this type of model and data, to come up with the right tuning parameters. With δa = 0.999

and the extended term buffer we observe 13 divergent transitions. It is possible this result is the

product of luck, rather than better tuning parameters. To be clear, we do not claim we found the

optimal model parameterization and tuning parameters. There is however, to our knowledge, no

straightforward way to do so.

Fitting the model with the embedded Laplace approximation. Running the algorithm with

Stan’s default tuning parameters produces 0 divergent transitions over 12,000 sampling iterations.

Fitting the model with ADVI. To run ADVI, we use the same Stan file as for full HMC and set

tol_rel_obj to 0.005.

The family of distribution, Q, over which ADVI optimizes requires the exact posterior dis-

tribution to be unimodal over the unconstrained scale. This is a crucial limitation in the studied

example, as shown in Figure 4.7. This notably affects our ability to select relevant covariates us-

ing the 90th posterior quantile. When examining the top six selected covariates (Table 1 in the

main text), we find the result from ADVI to be in disagreement with full HMC and the embedded

Laplace approximation. In particular, λ2586 which corresponds, according to our other inference

methods, to the most relevant covariate, has a relatively low 90th quantile. This is because ADVI

only approximates the smaller mode of π(λ2586 | y). Our results are consistent with the work by

Yao et al. (2018), who examine ADVI on a similar problem.
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Figure 4.7: Samples obtained with full HMC and sampling from the variational approximation
produced by ADVI when fitting a general linear model with a regularized horseshoe prior.

Sparse kernel interaction model

SKIM, developed by Agrawal et al. (2019), extends the model of Piironen and Vehtari (2017)

by accounting for pairwise interaction effects between covariates. The generative model shown

below uses the notation in 4.8.6 instead of that in Appendix D of Agrawal et al. (2019):

χ ∼ invΓ(sdf/2, sdf/2),

η2 =
τ2

c2 χ,

βi | τ, λ̃ ∼ Normal(0, τ2λ̃2
i ),

β j | τ, λ̃ ∼ Normal(0, τ2λ̃2
i ),

βi j | η2, λ̃ ∼ Normal(0, η2
2λ̃

2
i λ̃

2
j ),

β0 | c2
0 ∼ Normal(0, c2

0),

where βi and βi j are the main and pairwise effects for covariates xi and xi x j , respectively, and τ,

λ̃, c0 are defined in 4.8.6.

Instead of sampling {βi}
p
i=1 and {βi j}

p
i,j=1, which takes at least O(p2) time per iteration to store

and compute, Agrawal et al. (2019) marginalize out all the regression coefficients, only sampling

(τ, ξ, λ̃) via MCMC. Through a kernel trick and a Gaussian process re-parameterization of the

model, this marginalization takes O(p) time instead of O(p2). The Gaussian process covariance

matrix K induced by SKIM is provided below:
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Figure 4.8: Samples obtained with full HMC and sampling from the variational approximation
produced by ADVI when fitting the SKIM.

K1 = x diag(λ̃2) xT,

K2 = [x ◦ x] diag(λ̃2) [x ◦ x]T,

where “◦” denotes the element-wise Hadamard product. Finally,

K =
1
2
η2

2(K1 + 1) ◦ (K1 + 1) −
1
2
η2

2K2 − (τ
2 − η2

2)K1

+c2
0 −

1
2
η2

2 .
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Chapter 5: General Adjoint-differentiated Laplace approximation
CHARLES C. MARGOSSIAN

The hierarchical prior used in Latent Gaussian models (LGMs) induces a posterior geometry

prone to frustrate inference algorithms. Marginalizing out the latent Gaussian variable using an

integrated Laplace approximation removes the offending geometry, allowing us to do efficient in-

ference on the remaining parameters. To use gradient-based inference we need to compute the

approximate marginal likelihood and its gradient. The adjoint-differentiated Laplace approxima-

tion by Margossian et al. (2020b) offers a scalable method to differentiate LGMs with an arbitrary

prior covariance but places restrictions on the likelihood. Indeed the existing implementation only

works for likelihoods with a diagonal Hessian and requires users to pass analytical expressions

for the first three derivatives of the likelihood. I propose a generalization which is applicable to

a broad class of likelihoods and does not require any analytical derivatives. The added flexibility

comes at no computational cost: when compared to existing methods on a standard LGM, the pro-

posed generalization is in fact slightly faster. I also apply the general method to an LGM with an

unconventional likelihood. This example highlights the algorithm’s potential, as well as persistent

challenges.

5.1 Introduction

Latent Gaussian models (LGMs) are a popular class of Bayesian models, which include Gaus-

sian processes, multilevel models with a sparsity inducing prior, and population models, for exam-

ple in Pharmacometrics. Their general formulation is

φ ∼ π(φ), θ ∼ Normal(0,K(φ)), y ∼ π(y | θ, η),
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where φ ∈ Rp and η ∈ RT denote the (potentially overlapping) hyperparameters and θ ∈ Rn is

the latent Gaussian variable. The hierarchical prior on θ induces a challenging posterior geometry,

specifically an uneven curvature produced by the interaction between φ and θ, and a strong pos-

terior correlation between the different components of θ; see Section 2.3 for further details. The

integrated Laplace approximation, also termed the embedded Laplace approximation, proposes

to marginalize out θ, thereby allowing us to do inference on the more manageable distribution

π(φ,η | y). The posterior distribution of θ can then be studied by approximating the conditional

distribution π(θ | φ,η, y) in a post-sampling step.

Most existing implementations of the integrated Laplace approximation algorithmically restrict

the class of LGMs we can fit. This is because developers focus on specific motivating problems

and write algorithms whose speed and stability depend on certain regularity conditions. To expand

the scope of the integrated Laplace approximation, we must develop methods which do not rely

on such conditions. Furthermore the advent of automatic differentiation in Machine Learning and

Computational Statistics presents new opportunities to write code which is both more general and

more efficient (Baydin et al. 2018; Margossian 2019; Margossian and Betancourt 2022). Beyond

algorithmic limitations, there is also an inferential limitation, which is that the Laplace approxi-

mation may not be adequate. It is worth noting the quality of the approximation depends not only

on the likelihood distribution but also on the interaction of the likelihood and the prior. In the lim-

iting case where there is no observation tied to a particular parameter θi (e.g. empty cell in spatial

model), the posterior distribution of θi is exactly normal. If the data is sparse, it will be approxima-

tively normal. For examples on how the data regime influences the quality of the approximation,

see the discussion by Vanhatalo, Jylänki, and Vehtari (2009) and Talts et al. (2020).

Here I merely address the problem of constructing and differentiating the Laplace approxima-

tion, while recognizing that the approximation is not always useful. This project has two immediate

benefits:

(i) when writing software to support a menu of likelihoods, a single function can be used

for all likelihoods, thereby making the code shorter, more readable and straightforward to
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expand;

(ii) it is possible to experiment with new likelihoods and conduct research on the utility of

the integrated Laplace approximation.

I achieve both of these goals by building a prototype of the method in the probabilistic program-

ming language Stan (Carpenter et al. 2015; Carpenter et al. 2017).

5.1.1 Classical implementation and limitation

Fast algorithms take advantage of the convenient structure found in classical models at the

expanse of applications to less conventional cases. For example, the seminal algorithms by Ras-

mussen and Williams (2006) for inference on Gaussian processes assume the following:

(i) η = ∅

(ii) The log likelihood log π(y | θ, η) = log π(y | θ) has a diagonal Hessian. This often

means each observation yi can only depend on a single component of θ.

(iii) π(y | θ, η) is a log-concave likelihood and the Hessian is negative definite.

We can take advantage of these conditions to build a numerically stable Newton solver to find the

mode of π(θ | y, φ, η) when constructing the Laplace approximation.

Calculations of the approximate log marginal likelihood, log πG(y | φ,η), and its gradient with

respect to φ require methods to explicitly compute the derivative of the prior covariance, ∂K/∂φ,

and the first three derivatives of the likelihood with respect to θ. This means users must either pick

from a menu of prior covariances and likelihoods, with pre-coded derivatives, or engage in the

time-consuming and error prone task of hand-coding the requisite derivatives. Many software im-

plementations inherit at least some of these limitations (e.g Vanhatalo et al. 2013; Rue et al. 2017;

Margossian et al. 2020b).

The following examples violate the above conditions and required adjustments to make the

computation of the Laplace approximation feasible:
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Gaussian process regression with a Student-t likelihood. Vanhatalo, Jylänki, and Vehtari (2009)

and later Jylänki, Vanhatalo, and Vehtari (2011) propose to use a Student-t likelihood in order to

make Gaussian process regression robust to outliers. The Student-t likelihood is parameterized by

the latent Gaussian variable and an additional scale parameter, meaning η , ∅. Furthermore the

Student-t distribution is not log-concave and thus its Hessian not negative definite.

Motorcyle Gaussian process example. This example, described by Tolvanen, Jylänki, and Ve-

htari (2014) and Vehtari (2021), combines two Gaussian processes,

y ∼ normal(µ(x),Σ)

µ ∼ GP(0,K1(x))

τ ∼ GP(0,K2(x)),

where

Σ =

©­­­­­­­­«

exp(τ1(x)) 0 · · · · · · 0

0 exp(τ2(x)) 0 · · · 0
...

...
. . .

. . .
...

0 · · · · · · · · · exp(τn(x))

ª®®®®®®®®¬
Both the mean and variance to vary as a function of the covariate x. Conditional on µi and τi, the

yi’s are independent of the other elements of y. Combining the latent Gaussian variables into one,

θ = (µ1, τ1, µ2, τ2, · · · , µn, τn),

the above reduces to a single Gaussian process. The resulting model admits a 2× 2 block-diagonal

Hessian and is typically not negative-definite. The GPStuff package implements an integrated

Laplace approximation for this example, using an optimizer with carefully tuned initializations

(Vanhatalo et al. 2013).

Additional examples of LGMs with a less conventional structure include population pharma-

107



cometrics models with a differential equation based likelihood (e.g Gibaldi and Perrier 1982; Gas-

tonguay and Metrum Institute Facility 2013; Margossian, Zhang, and Gillespie 2022) and neural

networks with a horseshoe prior (Broussard et al. 2021). To my knowledge, the integrated Laplace

approximation has not been used for these or related examples. Section 5.6 presents an attempt to

use Hamiltonian Monte Carlo with an integrated Laplace approximation on a standard pharmaco-

metrics model, using the general implementation developed in this article.

5.1.2 Existing methods

Expanding the scope of the integrated Laplace approximation requires finding more general

methods to (i) construct a Laplace approximation of π(θ | φ,η, y) which is fundamentally an

optimization problem, and (ii) differentiate the approximate marginal distribution πG(y | φ,η).

Alternative Newton solvers

The Newton solver employed by Rasmussen and Williams (2006) assumes the negative Hessian

W , −
∂2π(y | θ, η)

∂θ2

is diagonal and positive definite, meaning Wii ≥ 0. If the likelihood is not log concave this condi-

tion is violated. To address this Vanhatalo, Jylänki, and Vehtari (2009) and Rasmussen and Nickish

(2010) propose modified Newton solvers. Another direction may be to use the Fisher information

matrix rather than the Hessian1. The information matrix is always semi-positive definite while the

definiteness of the Hessian depends on the value of θ, and crucially values of θ we encounter along

the optimization path.

Gradient computation

Early implementations of the integrated Laplace approximation, for example in the GPStuff

(Vanhatalo et al. 2013) and in the INLA (Rue et al. 2017) packages require methods which explic-
1Personal communication with Jarno Vanhatalo.
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itly compute derivatives, ∂K/∂φ, and higher-order derivatives of log π(y | θ, η) with respect to θ

and η. These derivatives are then plugged into a differentiation algorithm. The optimization step,

which produces the Laplace approximation, and the differentiation of the approximate marginal

distribution are done conjointly, meaning a host of terms can be carried over from one calcula-

tion to the other. In the algorithm by Rasmussen and Williams (2006) this notably spares us an

expansive Cholesky decomposition during the differentiation step.

Kristensen et al. (2016) apply automatic differentiation to the Laplace approximation and re-

move the requirement for any analytical derivatives, implementing their flexible strategy in the

TMB package. Their inverse subset algorithm bypasses the explicit computation of intermedi-

ate Jacobians and can in this sense be seen as an adjoint method. Margossian et al. (2020b) use

the same principles of automatic differentiation, showing that the calculation of ∂K/∂φ is both

superfluous and prohibitively expansive for high-dimensional φ. We shall see that a similar rea-

soning applies to derivatives of the likelihood. The adjoint-differentiated Laplace approximation

by Margossian et al. (2020b) differs from the inverse subset algorithm in two ways. First it requires

analytical higher-order derivatives of the likelihood; the main object of this article is to eliminate

this requirement. Secondly, the inverse subset algorithm treats the optimizer as a black box, while

the adjoint-differentiated Laplace approximation jointly optimizes and differentiates, in line with

the procedure by Rasmussen and Williams (2006). This comes at the cost of only working for a

specific type of Newton solver with the limitations described in Section 5.1.1.

5.1.3 Aim and results

I present a generalization of the adjoint-differentiated Laplace approximation for a class of

Newton solvers, which have appeared in the literature (e.g. Rasmussen and Williams 2006; Van-

hatalo, Jylänki, and Vehtari 2009; Rasmussen and Nickish 2010; Vanhatalo, Foster, and Hosack

2021). This unifying framework follows from the realization that most of these solvers are distin-

guished only by their application of the Woodburry-Sherman-Morrison matrix inversion lemma.

The key step to insure a numerically stable algorithm is to carefully choose a B-matrix which can
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be safely inverted. Judicious choices of B depend on the properties of the Hessian and the prior

covariance. The cost of the Newton step is then dominated by an O(n3) decomposition of B.

Automatic differentiation removes the requirement for analytical derivatives of the likelihood,

provided all operations in the evaluation of the likelihood support both forward and reverse mode

differentiation. Differentiating the Laplace approximation requires propagating derivatives through

the mode of log π(θ | y, θ, η). This can be done using the implicit function theorem. Gaebler

(2021) show that the cost of differentiation is then dominated by an LU decomposition. This

costly operation is eliminated by reusing the B-matrix, decomposed in the final Newton step. As in

Margossian et al. (2020b), I use the adjoint method of automatic differentiation, taking care to adapt

the method to higher-order derivatives. Another important step for an efficient implementation is

to exploit the sparsity of the Hessian. Without loss of generality, suppose the Hessian, ∇2
θ log π(y |

θ, η), is block diagonal, with block size m × m. The number of automatic differentiation sweeps

required to differentiate the approximate marginal density, πG(y | θ, η), is O(m). Crucially this

number does not depend on either the data size, the dimension of the latent Gaussian θ, nor the

dimension of the hyperparameters φ and η.

The resulting algorithm only requires users to specify code to evaluate the prior covariance

and the log likelihood but not their derivatives. In general switching from analytical derivatives

to automatic differentiation incurs some computational cost. However adjoint methods, in addi-

tion to automating the computation of derivatives, bypass the evaluation of certain terms, which

may be expansive to calculate even when analytical expressions exist. When applied to the sparse

kernel interaction model (SKIM) studied by Margossian et al. (2020b) (Figure 4.1), the general

adjoint-differentiation outperforms the adjoint-differentiation, despite not having access to analyt-

ical derivatives (Figure 5.1). Hence the generalization presents code which is more readable, more

expandable, and slightly more efficient.

Understanding the benefits of the general adjoint-differentiated Laplace approximation on un-

conventional likelihoods remains ongoing work. Section 5.6 examines a population pharmacoki-

netic model, which a likelihood parameterized by a linear ordinary differential equation. This ex-
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Figure 5.1: Wall time to differentiate the marginal density of a SKIM using the general adjoint-
differentiated Laplace approximation (Algorithm 5.4), benchmarked against the method by Mar-
gossian et al. (2020b).

amples demonstrates the integrated Laplace approximation can be very accurate in an unorthodox

setting, but highlights how challenging it can be to compute the approximation when the likelihood

is not log-concave.

5.2 Newton solvers and B-matrices

Algorithm 5.1: Abstract Newton solver

1 input: y, φ, η, K , π(y | θ, η), θ0, ∆ ;

2 θ ← θ0 . initial guess

3 Ψnew ← −∞ . initial objective

4 while (|Ψnew − Ψold | ≥ ∆) do

5 W ← −∇2
θ log π(y | θ, η)

6 θ ← (K−1 +W)−1(Wθ + ∇θ log π(y | θ, η))
7 Ψold ← Ψnew

8 Ψnew ← −
1
2θ

T K−1θ + log π(y | θ, η)

9 end

10 return: log πG(y | φ,η) = Ψnew −
1
2 log |K | |K−1 +W |
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Algorithm 5.1 describes an abstract Newton solver, without the details required to insure

a numerically stable implementation. The expression for the approximate marginal likelihood,

log πG(y | φ,η), is obtained via a Gaussian integral; see Rasmussen and Williams (2006, Section

3.4.4). We use this abstraction to define a class of Newton solvers which can be used to compute

the approximate marginal likelihood and its gradient, while requiring minimal adjustments to our

algorithm when we switch optimizer.

The main difficulty with a “brute force” implementation of the above solver is that we cannot

safely invert the prior covariance matrix, K , or the sum (K−1 + W), whose eigenvalues may be

arbitrarily close to 0. We will encounter similar issues when trying to invert W in our calculation

of the gradient. Our main asset to avoid these difficult inversions is the Woodburry-Sherman-

Morrison formula, stated below for convenience.

Lemma 5.1. (Woodburry-Sherman-Morrison formula.) Given Z ∈ Rn×n, W ∈ Rm×m, U ∈ Rn×m,

and V ∈ Rn×m, we have

(Z +UWVT )−1 = Z−1 − Z−1U(W−1 + VT Z−1U)−1VT Z−1,

where we assume the relevant inverses all exist.

Lemma 5.1 offers several decompositions we can take advantage of. We consider three:

(K−1 +W)−1 = K − KW
1
2 (I +W

1
2 KW

1
2 )−1W

1
2 K,

= K
1
2 (I + K

1
2TWK

1
2 )−1K

1
2T,

= K − KW(I + KW)−1K, (5.1)

where A
1
2 is an equivalence class of matrices, such that A

1
2 A

1
2T = A.

All three decompositions present us with a matrix which is safe to invert. Overloading nota-

tion, I denote B the matrix to invert on the RHS. Remarkably all B-matrices have the same log

determinant, which is equal to the log determinant needed to compute the approximate marginal
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distribution. This can be shown using the determinant version of the Woodbury-Sherman-Morrison

formula, stated below for convenience.

Lemma 5.2. (Woodbury-Sherman-Morrison for determinants) Given Z ∈ Rn×n, W ∈ Rm×m, U ∈

Rn×m, and V ∈ Rn×m, we have

|Z +UWVT | = |Z | |W | |W−1 + VT Z−1U |,

where we assume the relevant inverses all exist.

Then some careful manipulations give us

log |K | |K−1 +W | = log |I +W
1
2 KW

1
2 |

= log |I + K
1
2TWK

1
2 |

= log |I + KW |. (5.2)

5.2.1 B = I +W
1
2 KW

1
2

To use the first decomposition we need to compute W
1
2 . One option is to take the matrix square-

root which requires W to be quasi-triangular2. To achieve better computation we may exploit the

sparsity of the Hessian, which is often block-diagonal. Denoting m × m the size of each block and

n×n the size of the Hessian, computing the square root or the Cholesky decomposition block-wise

costs O(m2n) operations, rather than O(n3). In the case where W is positive-definite and diagonal,

it suffices to take the element-wise square-root for a total complexity O(n).

The advantage of this decomposition is that B is a symmetric matrix. We can therefore com-

pute a Cholesky decomposition, L, and in turn use it for solve methods, and to compute the log

2See the implementation in Eigen, https://eigen.tuxfamily.org/dox/unsupported/group_
_MatrixFunctions__Module.html.
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determinant of B,

log |B | = log |L | |LT | = 2
∑

i

log Lii .

We can now write a numerically stable version of the Newton solver under the assumption that

W
1
2 exists (Algorithm 5.2). This is the Newton solver used by Rasmussen and Williams (2006) and

Margossian et al. (2020b), except that we do not assume W is diagonal. One particularly useful

detail is that at each Newton step we compute

a = K−1θ, (5.3)

without actually inverting K . The vector a is then used to compute the objective function and

during the adjoint-differentiation step (Section 5.4.5).

The Newton iteration can be augmented with a linesearch step. Let aold and θold be respectively

the a-vector and the guess for θ computed at the previous iteration. Then reducing the step length

by a factor of 2 is done by updating a, given that

a←
a + aold

2
⇐⇒ θ ←

θnew + θold

2
.

This procedure is repeated until a chosen condition is met. We may for example require the objec-

tive function, Ψ, to decrease at each Newton iteration. Checking this condition is cheap, given that

equipped with a, the computation of the objective function is inexpensive.

If all our optimizers subscribe to a similar structure, we can write algorithms for the approxi-

mate marginal likelihood and its gradient which are (mostly) agnostic to which optimizer we use.

5.2.2 B = I + K
1
2TWK

1
2

This decomposition is proposed by Vanhatalo, Foster, and Hosack (2021) for the case where the

likelihood is not log-concave meaning that W is not amiable to any straightforward decomposition.

114



Algorithm 5.2: Newton solver using B = I +W
1
2 KW

1
2

1 input: K , y, π(y | θ, φ), ∆

2 θ ← θ0 (initial guess)

3 Ψnew ← −∞ (initial objective)

4 while (|Ψnew − Ψold | ≥ ∆) do

5 W ← −∇θ∇θ log π(y | θ, φ)
6 L ← Cholesky(I +W

1
2 KW

1
2 )

7 b← Wθ + ∇θ log π(y | θ, φ)
8 a← b −W

1
2 LT \ (L \ (W

1
2 Kb))

9 θ ← Ka
10 Ψold = Ψnew

11 Ψnew ← −
1
2aθ + log π(y | θ, η)

12 end

13 log π(y | φ) ← Ψnew −
∑

i log Lii

14 return: θ, log πG(y | φ)

On the other hand, we assume K can be safely inverted. Since K is a covariance matrix, K
1
2

can be computed using a Cholesky decomposition. B is still symmetric and admits a Cholesky

decomposition, LLT = B.

With this B-matrix, the Newton step is

θnew = (K−1 +W)−1(∇ log π(y | θ, η) +Wθ)

= K
1
2 (I + K

1
2TWK

1
2 )−1K

1
2 (∇ log π(y | θ, η) +Wθ)

, K
1
2 c,

which does not quite have the desired form θnew = Ka. We can however compute a = K−
1
2 c,

which is cheap given K
1
2 is triangular. Reconstructing a is not strictly necessary but it makes this

approach more consistent with the Newton steps used for other B-matrices.
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5.2.3 B = I + KW

The third and final decomposition makes no strong assumptions on K and W . The major

drawback of this approach is that the B-matrix is not symmetric and therefore does not admit

a Cholesky decomposition. Instead, we resort to the more expansive LU-decomposition (with

partial-pivoting given B is invertible),

B = LU,

where L is lower-triangle, U upper-triangle, and which can then be used for solve methods with B

and to compute log |B |.

Algorithm 5.3 provides a general computation of the Laplace approximation, which admits a

choice of B-matrix as an option.

5.3 Gradients with respect to φ and η

Lemma 5.3. Without loss of generality, assume K only depends on φ, while the likelihood log π(y |

θ, η) only depends on η. Denote θ̂ the argument which maximizes π(θ | y, φ, η). The derivative of

the approximate marginal likelihood with respect to an element φ j of φ is

∂

∂φ j
log πG(y | φ,η) = −

1
2
θ̂T K−1 ∂K

∂φ j
K−1θ̂

−
1
2

trace
(
(W−1 + K)−1 ∂K

∂φ j

)
+

n∑
i=1

∂

∂θ̂i
log πG(y | φ,η) · (I + KW)−1 ∂K

∂φ j
, (5.4)

where we assume the requisite derivatives exist and

∂

∂θ̂i
log πG(y | φ,η) = −

1
2

trace
(
(K−1 +W)−1 ∂W

∂θ̂i

)
. (5.5)

This result is worked out by Rasmussen and Williams (2006, Section 5.5.1). A similar result is

obtained when differentiating with respect to η.
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Algorithm 5.3: General Newton solver. Writing all three Newton solvers in one algo-
rithm highlights common features between the methods, which leads to lighter code and
more general methods for calculating gradients.

1 input: y, φ, η, K(φ), π(y | θ, η), B-matrix

2 θ = θ0 (initial guess)

3 Ψold = −∞ (initial objective)

4 while (|Ψnew − Ψold | > ∆) do

5 W = −∇2
θ log π(y | θ, η)

6 b = Wθ + ∇θ log π(y | θ, η)
7 if (B = I +W

1
2 KW

1
2 ) then

8 L = Cholesky(B)
9 a = b −W

1
2 LT\(L\W

1
2 Kb))

10 else if (B = I + K
1
2TWK

1
2 ) then

11 L = Cholesky(B)

12 c = LT\(L\(K
1
2 b))

13 a = K
1
2 \c

14 else if (B = I + KW) then

15 (L,U) = LUdecomposition(I + KW)

16 a = b −WU\(L\(Kb))

17 end

18 Ψold = Ψnew

19 Ψnew = −
1
2aθ + log π(y | θ, η)

20 if (B = I +W
1
2 KW

1
2 or B = I + K

1
2TWK

1
2 ) then

21 log |B| = 2
∑

i log Lii

22 else if (B = I + KW) then

23 log |B| =
∑

i log Lii +
∑

i log Uii

24 end

25 end

26 return: log πG(y | φ,η) = Ψnew −
1
2 log |B |
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Lemma 5.4. The derivative of the approximate marginal likelihood with respect to an element ηl

of η is

∂

∂ηl
log πG(y | φ,η) =

∂

∂ηl
log π(y | θ̂, η)

+
1
2

trace

(
(K−1 +W)−1 ∂∇

2
θ log π(y | θ̂, η)

∂η j

)
+

n∑
i=1

∂ log πG(y | φ,η)
∂θ̂i

· (I + KW)−1K
∂

∂ηl
∇θ log π(y | θ̂, η), (5.6)

where we assume the requisite derivatives exist.

The proof is in the appendix at the end of this chapter. Several of the above expressions can be

simplified in the special cases where W or K are diagonal.

Remark 5.1. The derivative with respect to either η or θ decomposes into three terms:

(i) an explicit term (partial derivative of the objective function),

(ii) the derivative of a log determinant, which becomes a trace,

(iii) a dot product with a gradient with respect to θ̂.

The expressions in Lemmas 5.3 and 5.4 are organized accordingly. I will use this organization in

Section 5.4.4.

Once again we must contend with inverted matrices, namely (K−1 + W)−1, which we have

already dealt with when building the Newtons solver, and (I + KW)−1. It turns out the latter can

also be handled with decompositions of the B-matrix performed during the final Newton step,

meaning no further Cholesky or LU decomposition is required. Indeed

(I + KW)−1 = I − K(K +W−1)−1, (5.7)
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and (K +W−1)−1 can be expressed in terms of any of three B-matrices we are working with:

R , (K +W−1)−1 = W
1
2 (I +W

1
2 KW

1
2 )−1W

1
2

= W −WK
1
2 (I + K

1
2TWK

1
2 )−1K

1
2TW

= W −W(I + KW)−1KW . (5.8)

The last equality is superfluous, since we can directly handle the original matrix (I + KW)−1 if

we use B = I + KW . To run the adjoint-differentiated Laplace approximation by Margossian et

al. (2020b), extended to handle derivatives with respect to η, methods to compute the following

derivatives (analytically or otherwise) need to be provided:

• ∇θ log π(y | θ, η),

• ∇2
θ log π(y | θ, η),

• ∇3
θ log π(y | θ, η),

• ∇η log π(y | θ, η),

• ∇η∇θ log π(y | θ, η),

• ∇η∇2
θ log π(y | θ, η).

5.4 Automatic differentiation of the likelihood

Fortunately we can eliminate the burden of analytically computing derivatives by applying

automatic differentiation, as was already done to remove calculations of ∂K/∂φ.
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5.4.1 Allowed operations with automatic differentiation

Consider a function

f : Rm → Rn

x → f (x).

A forward mode sweep of automatic differentiation allows us to compute the directional derivative

∂ f
∂x
· v

for an initial tangent v ∈ Rm. A reverse mode sweep, on the other hand, computes the co-directional

derivative

wT ·
∂ f
∂x

for an initial cotangent w ∈ Rn. We can compute higher-order derivatives by iteratively applying

sweeps of automatic differentiation. This procedure is straightforward for forward mode, less so

for reverse mode. When doing multiple sweeps in Stan, we may only use a single reverse mode

sweep and this sweep must be the final sweep (Carpenter et al. 2015).

5.4.2 Principles for an efficient implementation

I observe the following principles to write an efficient implementation:

1. Contraction. Avoid computing full Jacobian matrices. Instead, only compute directional

derivatives by contracting Jacobian matrices with the right tangent or cotangent vectors.

2. Linearization. In the original algorithm, identify linear operators,Φ, which take in and return

a derivative, e.g.
∂c
∂ai
= Φ

(
∂b
∂ai

)
∈ R

Then rather than compute the derivatives one element at a time, compute Φ(b) and apply a

120



reverse mode sweep of automatic differentiation to obtain the desired gradient. This can be

seen as a strategy to identify the directions along which to compute derivatives.

3. Sparse computation. For sparse objects of derivatives, only compute the non-zero elements,

again by carefully picking the directions along which we compute the derivatives.

At each step of the Newton solver, I compute the full negative Hessian, W , even though this is not

strictly necessary. This is because (i) the Hessian is typically sparse and therefore relatively cheap

to compute, and (ii) W is used many times both in the computation of the Laplace approximation

and its differentiation.

5.4.3 Differentiating the negative Hessian, W

Most LGMs admit a likelihood with a block-diagonal or even diagonal Hessian. In typical

automatic differentiation frameworks, the cost of computing a block-diagonal Hessian with block

size m × m is 2m sweeps. This is notably the case with Stan as I will demonstrate. Somewhat

contrary to general wisdom, it is actually possible to compute a Hessian matrix with a single

reverse mode sweep using a graphical model and an algebraic model (Gower and Mello 2011). I

have not investigated this approach but believe it is promising3.

Diagonal Hessian

Consider a function

f : Rn → R

θ → f (θ).

3... following a conversation with Robert Gower.
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Suppose for starters that f admits a diagonal Hessian. To get the non-zero elements of ∇2
θ log π(y |

θ, η), we only need to compute the Hessian-vector product,

[∇2
θ log π(y | θ, η)] · v,

where v = (1,1, ...,1) ∈ Rn. This operation can be done using one forward mode and one reverse

mode sweep of automatic differentiation. In details: we introduce the auxiliary function

g : Rn → R,

θ → ∇θ log π(y | θ, η) · v,

which returns the sum of the partial derivatives and can be computed using one forward sweep.

Then aT [∇θg(θ)] can be computed using one reverse mode sweep, where a = (1) is a vector of

length 1 which contracts the 1 × n gradient into a scalar. Concisely

[∇2
θ log π(y | θ, η)] · v = aT · ∇θ(∇θ log π(y | θ, η) · v). (5.9)

A similar procedure can be used to compute the diagonal tensor of third-order derivatives,

noting that it too only contains n non-zero elements:

Diag
(
∇3
θ log π(y | θ, η)

)
= aT · ∇θ (∇θ (∇θ f · v) · v) . (5.10)

This operation is performed in three sweeps, starting from the inner-most parenthesis and expand-

ing out.

Block-diagonal Hessian

Now suppose f admits a 2×2 block diagonal Hessian. I use the 2×2 case to develop some intu-

ition before generalizing. Consider the vectors v1 = (1,0,1,0, ...,1,0) ∈ Rn and v2 = (0,1, ...,0,1) ∈
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Rn. Then

∇2 f · v1 =

©­­­­­­­­­­­­­«

∂2
θ2

1
f ∂2

θ1θ2
f 0 0 ...

∂2
θ1θ2

f ∂2
θ2

2
f 0 0 ...

0 0 ∂2
θ2

3
f ∂2

θ3θ4
f ...

0 0 ∂2
θ3θ4

f ∂2
θ2

4
f ...

... ... ... ... ...

ª®®®®®®®®®®®®®¬

©­­­­­­­­­­­­«

1

0

1

0

...

ª®®®®®®®®®®®®¬
=

©­­­­­­­­­­­­«

∂2
θ2

1
f

∂2
θ1θ2

f

∂2
θ2

3
f

∂2
θ3θ4

f

...

ª®®®®®®®®®®®®¬
and

∇2 f · v2 =

©­­­­­­­­­­­­­«

∂2
θ2

1
f ∂2

θ1θ2
f 0 0 ...

∂2
θ1θ2

f ∂2
θ2

2
f 0 0 ...

0 0 ∂2
θ2

3
f ∂2

θ3θ4
f ...

0 0 ∂2
θ3θ4

f ∂2
θ2

4
f ...

... ... ... ... ...

ª®®®®®®®®®®®®®¬

©­­­­­­­­­­­­«

0

1

0

1

...

ª®®®®®®®®®®®®¬
=

©­­­­­­­­­­­­«

∂2
θ1θ2

f

∂2
θ2

2
f

∂2
θ3θ4

f

∂2
θ2

4
f

...

ª®®®®®®®®®®®®¬
.

These two Hessian-vector products return all the non-zero elements of the Hessian. Thus com-

puting the full Hessian requires 2 times the effort to evaluate a diagonal Hessian. Specifically, we

first compute ∇ f · v1 using a forward sweep, followed by one reverse mode sweep, and repeat the

process with v2. The total cost for computing a 2 × 2 block-diagonal Hessian is thus 4 sweeps4.

The average cost of the sweeps can be reduced by exploiting the symmetry of the Hessian (e.g

Griewank and Walther 2008; Gower and Mello 2011).

In the m × m block-diagonal case, we need to construct m initial tangents,

v1 = (1,0, · · · ,0︸     ︷︷     ︸
m

,1,0, · · · ,0︸     ︷︷     ︸
m

, · · · ,1,0, · · · ,0︸     ︷︷     ︸
m

)

v2 = (0,1, · · · ,0︸     ︷︷     ︸
m

,0,1, · · · ,0︸     ︷︷     ︸
m

, · · · ,0,1, · · · ,0︸     ︷︷     ︸
m

)

...

vm = (0,0, · · · ,1︸     ︷︷     ︸
m

,0,0, · · · ,1︸     ︷︷     ︸
m

, · · · ,0,0, · · · ,1︸     ︷︷     ︸
m

). (5.11)

4If we could start with reverse mode and then run forward mode, we could imagine computing the Hessian in 3
sweeps.
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The elements of the Hessian are then computed using one forward mode along m directions, fol-

lowed by a reverse mode.

5.4.4 Differentiating the approximate marginal density

Differentiating the approximate marginal density with respect to the hyperparameters φ and η

requires computing three terms: (i) an explicit term, (ii) a differentiated log determinant, and (iii) a

dot product with a derivative with respect to θ (Lemmas 5.3 and 5.4, and Remark 5.1). The terms

for φ are handled by Rasmussen and Williams (2006) and Margossian et al. (2020b), so I will

focus on η. The explicit term for η is simply the partial derivative of log π(y | θ, η) with respect to

η which can be obtained using one reverse mode sweep of automatic differentiation.

Differentiating the log determinant

Differentiating a log determinant produces a trace (see appendix). From Lemmas 5.3 and 5.4

we see that we must evaluate a higher-order derivative inside a trace with respect to both η and θ̂,

trace
(
(K−1 +W)−1 ∂W

∂ηl

)
and trace

(
(K−1 +W)−1 ∂W

∂θ̂ j

)
.

Here I apply the linearization principle of automatic differentiation. Let A = (K−1+W)−1 and note

that trace(AW) is a linear function of W . Once we evaluate and tape trace(AW), it remains to do

one reverse mode sweep to obtain a gradient with respect to η and θ̂. I use the term tape to indicate

that we must store the expression graph for trace(AW) in order to perform the reverse mode sweep,

given W depends on both η and θ̂.

Now

trace(AW) =
∑

i

∑
k

AikWki =
∑

i

∑
k

AikWik, (5.12)

where the second equality follows from the fact W is symmetric. Without loss of generality, assume

W is block diagonal, with block size m × m. As in our calculations of the Hessian, we start with a

forward mode sweep along an initial tangent v1. Next we do a second forward mode sweep with
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an initial tangent which contains the first column of each m × m block in A,

w1 = (A1,1, A2,1, · · · , Am,1, Am+1,m+1, Am+2,m+1, · · · ). (5.13)

That is w1 contains the colored elements in the below representation of A,



A1,1 A1,2 · · · · · · · · · · · ·

A2,1 A2,2 · · · · · · · · · · · ·

...
...

. . .
. . .

. . .
. . .

Am,1 Am,2 · · · · · · · · · · · ·

Am+1,1 · · · · · · Am+1,m+1 Am+1,m+2 · · ·

· · · · · · · · · Am+2,m+1 Am+2,m+2 · · ·

...
...

...
...

...
. . .

A2m,1 · · · · · · A2m,m+1 A2m,m+2 · · ·

A2m+1,1 · · · · · · A2m+1,m+1 A2m+1,m+2 · · ·

...
...

...
...

...
. . .



.

To obtain the full trace, we repeat this process m times using the appropriate initial tangents, v j

and w j , j ∈ [m]. It may be surprising that computing a scalar would require so many sweeps but

this seems to be because there is an implicit matrix-matrix multiplication, which prevents us from

describing the sum given by the trace using only two tangent vectors. In other words, we cannot

describe all the relevant nm elements of A using only 2n elements, unless A is low-rank.

To avoid repeating these calculations for θ̂ and η, I compute the forward mode sweeps with

respect to both θ̂ and η at once. To do so, I append T 0’s to v j and w j , where T is the dimension of
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η, e.g.

v∗1 = (1,0, · · · ,0︸     ︷︷     ︸
m

,1,0, · · · ,0︸     ︷︷     ︸
m

, · · · ,0,0, · · · ,0︸     ︷︷     ︸
T

),

w∗1 = (A1,1, A2,1︸    ︷︷    ︸
m

, · · · , Am,1, Am+1,m+1, Am+2,m+1︸                         ︷︷                         ︸
m

, · · · ,0,0, · · · ,0︸     ︷︷     ︸
T

). (5.14)

Unfortunately this procedure requires computing A, a potentially expansive operation. The cost

can be reduced by only computing the block-diagonal elements of A.

Differentiating the dot product

The dot product results from the chain rule, which requires us to multiply ∂ log πG(y | φ,η)/∂θ̂ j

and ∂θ̂ j/∂ηl . Let

s2 , ∇θ̂ log πG(y | φ,η) = −
1
2

trace
(
(K−1 +W)−1

)
. (5.15)

s2 can be computed using the method outlined in the previous section. Once again these calcula-

tions are subject to useful simplifications when W is diagonal.

Per Lemma 5.4, the dot product is taken with

s3 , (I + KW)−1K
∂

∂ηl
∇θ log π(y | θ̂, η)

= (I − KR)K
∂

∂ηl
∇θ log π(y | θ̂, η), (5.16)

where the second equality follows from Equation 5.7 and R can safely be computed using any of

the three B-matrices introduced in Section 5.2. Here too I apply the linearization principle and

consider the function

s̃3 , (I − KW)−1K∇θ̂ log π(y | θ̂, η) = (I − KR)K∇θ̂ log π(y | θ̂, η). (5.17)
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The scalar sT
2 s̃3 can be computed using one forward sweep with respect to θ̂ and initial tangent

u = K(I − KW)−1s2 = K(I − KR)s2, (5.18)

where I drop the transpose on the term before s2 due to symmetry. It then remains to apply a

reverse mode sweep with respect to η.

5.4.5 General adjoint-differentiation

We are finally ready to write down the general adjoint-differentiation (Algorithm 5.4).

Let

AD( f , [fwd,v, x])

be a single forward mode sweep which returns ∂ f /∂x · v. Similarly, AD( f , [rev,w, x]) returns wT ·

∂ f /∂x. Furthermore, we can encode multiple sweeps, for example AD( f , [fwd,v, x], [rev,w, x]),

where sweeps are executed from the left to the right.

5.5 Posterior draws for the marginalized out parameters

I review a procedure to generate posterior draws for the latent Gaussian variable, θ, following

Rasmussen and Williams (2006), and show how this approach fits in the B-matrix framework.

After generating posterior draws for the hyperparameters, (φ,η), we recover posterior draws

for θ using the Laplace approximation:

(φ,η) ∼ π(φ,η | y),

θ ∼ πG(θ | y, φ, η) ≈ π(θ | y, φ, η).

We may also want to draw new latent Gaussian variables, θ∗, given a prior distribution π(θ, θ∗).

In a Gaussian process, the covariance matrix, K , is typically parameterized by φ and a covariate

X . Hence, for a new set of observations, the new prior covariance would be K(φ,X∗). Let K∗ =
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Algorithm 5.4: General adjoint-differentiation. Note: additional specialized steps can
be taken in the case where W or K is diagonal.
1 input: y, φ, η, π(y | θ, η)
2 saved input from the Newton solver: θ̂, a, ∇θ̂ log π(y | θ̂, η), K , B-matrix
3 W

1
2 , L . B = I +W

1
2 KW

1
2 , LLT = B

4 W , K
1
2 , L . B = I + K

1
2TWK

1
2 , LLT = B

5 W , L, U . B = I + KW , LU = B
6 if (B = I +W

1
2 KW

1
2 ) then

7 R← W
1
2 LT\(L\W

1
2 ) . R = (K +W−1)−1

8 C ← L\(W
1
2 K)

9 A← K − CTC . A contains initial tangents for log det. derivative.
10 else if (B = I + K

1
2TWK

1
2 ) then

11 D← L\K
1
2 W

12 R← W − DT D
13 C ← L\K

1
2T

14 A← CTC
15 else if (B = I + KW) then
16 R← W −WCW
17 C ← U\L\K
18 A← K − KWC
19 end
20 V ← [v∗1,v

∗
2, · · · ,v

∗
m] . Initial tangents, Equations 5.11 and 5.14

21 W ← [w∗1,w
∗
2, · · · ,w

∗
m] . Initial tangents using A, Equations 5.13 and 5.14

22 s← 0
23 for i ∈ {1,2, · · · ,m} do
24 s← s + AD(log π(y | θ̂, η), [fwd,v∗i , ϑ], [fwd,w∗i , ϑ]) . ϑ , (θ̂, η)
25 end
26 s← AD(s, [rev,1, ϑ])
27 s2 ← s[1 : n] . Gradient of log determinant w.r.t θ̂
28 s′2 ← s[(n + 1) : (n + T)] . Gradient of log determinant w.r.t η
29 ΩT = 1

2aaT − 1
2 R + (s2 + RKs2)[∇θ̂ log π(y | θ̂, η)]T . (Margossian et al. 2020b, 3.2)

30 ∇φ log πG(y | φ,η) = AD(K, [rev,Ω, φ])
31 if (B = I +W

1
2 KW

1
2 ) or (B = I + K

1
2TWK

1
2 ) then

32 u = K(I − KR)s2 . Initial tangent, Equation 5.18
33 else if (B = I + KW) then
34 u = U\L\K . Initial tangent, Equation 5.18
35 end
36 ∇η log πG(y | φ,η) = AD(log π(y | θ̂, η), [rev,1, η]) + s′2 . Lemma 5.4
37 +AD(log π(y | θ̂, η), [fwd,u, θ], [rev,1, η])
38 return: ∇φ log πG(y | φ,η), ∇η log πG(y | φ,η)
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K(X,X∗) be the prior covariance between θ and θ∗, i.e. the upper-right block in the complete

covariance matrix for (θ, θ∗). Similarly note that K = K(X,X). The mean of the approximating

normal is then

EG(θ
∗ | X, y, φ,X∗) = K∗K−1θ̂ = K∗∇θ̂ log π(y | θ̂, η).

The second equality follows from the fact θ̂ is the mode of the conditional distribution, π(θ |

y, φ, η), meaning

∇Ψ = 0 =⇒ θ̂ = K∇θ̂ log π(y | θ̂, η).

Furthermore,

ΣG(θ
∗ | X, y, φ,X∗) = K∗ − K∗(K +W−1)−1K∗

= K∗(I − RK∗),

where R can be computed using any of three B-matrices. The procedure is summarized in Algo-

rithm 5.5. Here the computation is dominated by the evaluation of the covariance matrix, ΣG .

5.6 Numerical experiment

The integrated Laplace approximation is a well established method with success in many ap-

plications; see Rue et al. 2017 and references therein. A handful of papers study the potential of

the integrated Laplace approximation when combined with MCMC, which is useful to expand the

range of priors we can use (e.g. Gómez-Rubio and Rue 2018; Monnahan and Kristensen 2018;

Margossian et al. 2020b). Applications to less conventional likelihoods include the work by Van-

hatalo, Jylänki, and Vehtari (2009), Jylänki, Vanhatalo, and Vehtari (2011), Joensuu et al. (2012),

Riihimäki and Vehtari (2014), and Vanhatalo, Foster, and Hosack (2021). I examine the application

of Hamiltonian Monte Carlo (HMC) using a general adjoint-differentiated Laplace approximation

to a population pharmacokinetic model. This model falls outside the traditional framework of
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Algorithm 5.5: Posterior draws for latent Gaussian θ∗

1 intput: y, φ, η,X,X∗,K(φ,X,X∗), π(y | θ, η)

2 saved input from the Newton solver: θ̂, W , K , ∇θ̂ log π(y | θ̂, η)
3 W

1
2 , L . B = I +W

1
2 KW

1
2 , LLT = B

4 W , K
1
2 , L . B = I + K

1
2TWK

1
2 , LLT = B

5 W , L, U . B = I + KW , LU = B

6 K∗ ← K(X,X∗)

7 µ∗ ← K∗∇θ̂ log π(y | θ, η)
8 if (B = I +W

1
2 KW

1
2 ) then

9 V ← L\W
1
2 K∗

10 Σ∗ ← K∗ − VTV

11 else if (B = I + K
1
2TWK

1
2 ) then

12 D← L\K
1
2 W

13 R← W − DT D

14 Σ∗ ← K∗(I − RK∗)

15 else if (B = I + KW) then
16 Σ∗ = K∗ − K∗(W −WU\L\KW)K∗

17 end
18 θ∗ ∼ Normal(µ∗,Σ∗)

19 return: θ∗.
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Gut Central
k1 k2

Figure 5.2: One compartment model with first-order absorption from the gut. The drug enters the
body through the gut (bolus dose) and is then absorb in to the central compartment (blood and
tissues) at a rate k1. Over time, the drug is cleared at a rate k2.

LGMs and is meant to stress-test our algorithm, while taking advantage of its flexibility.

The one-compartment pharmacokinetic model with a first-order absorption from the gut de-

scribes the diffusion of an orally administered drug compound in the patient’s body (Figure 5.2).

Two parameters of interest are the absorption rate, k1, and the clearance rate, k2. The population

model endows each patient with their own rate parameters, subject to a hierarchical normal prior.

Of interest are the population parameters, k1,pop and k2,pop, and their corresponding population

standard deviation, τ1,pop and τ2,pop.
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The full model is given below

hyperpriors

k1,pop ∼ Normal(2,0.5)

k2,pop ∼ Normal(1,0.5)

τ1 ∼ Normal+(0,1)

τ2 ∼ Normal+(0,1)

σ ∼ Normal+(0,1)

hierarchical priors

kn
1 ∼ Normal(k1,pop, τ1)

kn
2 ∼ Normal(k2,pop, τ2)

likelihood

yn ∼ Normal
(
mcent(t, kn

1, k
n
2), σ

)
,

where the second argument for the Normal distribution is the standard deviation and Normal+

is a normal distribution truncated at 0, with non-zero density only over positive values. mcent is

computed by solving the ordinary differential equation (ODE),

dmgut

dt
= −k1mgut

dmcent

dt
= k1mgut − k2mcent,
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which admits an analytical solution, when k1 , k2,

mgut(t) = m0
gut exp(−k1t)

mcent(t) =
exp(−k2t)

k1 − k2

(
m0

gutk1(1 − exp[(k2 − k1)t] + (k1 − k2)m0
cent)

)
.

Here m0
gut and m0

cent are the initial conditions at time t = 0. Each patient receives one dose at

time t = 0, and measurements are taken at times t = (0.083,0.167,0.25,1,2,4) for a total of 6

observations per patient. Data is simulated over 10 patients.

In our notation for LGMs,

φ = (τ1, τ2), Hyperparameters for prior covariance

η = σ, Hyperparameters for likelihood

θ = (k1,k2), Latent Gaussian variable

where ki is a vector with the patient level absorption and clearance parameters. This model violates

all three assumptions for the classical integrated Laplace approximation (Section 5.1.1). Indeed,

η , ∅, the Hessian is block-diagonal, with block size 2 × 2 (once we organize the parameters to

minimize the block size), and the likelihood is not log-concave. W does not admit a matrix square-

root and the B-matrix, B = I +W
1
2 KW

1
2 , cannot be used. The alternative B-matrices both work,

with B = I + KW being slightly more stable. In both cases, I use a linesearch step.

The optimization problem underlying the Laplace approximation is difficult, resulting in slow

computation and numerical instability as the Markov chain explores the parameter space. This

problem is particularly acute during the warmup phase. By contrast, the optimizer behaves rea-

sonably well in the examples studied by Margossian et al. (2020b), all of which employ a general

linear model likelihood.

I use HMC applied to the full parameter space, or full HMC, as a benchmark. Full HMC does

quite well on this example, meaning that, unlike in other cases, the posterior geometry is well-
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Figure 5.3: Posterior samples obtained with full HMC and the integrated Laplace approximation
on a population pharmacokinetic model

behaved. Despite the unorthodox nature of the likelihood, the integrated Laplace approximation

produces posterior estimates of the hyperparameters which are in close agreement with full HMC

(Figure 5.3). The bias introduced by the approximation is negligible, meaning we can compare

the effective sample size (ESS) estimated for both samplers. With both methods, the chain’s au-

tocorrelation is relatively small. The integrated Laplace approximation generates a larger ESS,

exceeding the actual sample size for σ, meaning the Monte Carlo estimators are super-efficient

(Figure 5.4). This is because marginalization allows us to run HMC on a posterior distribution

with a well-behaved geometry. That said, the excessively slow optimization for this non-convex

problem means the performance of full HMC is vastly superior as measured by the ESS / second

(Figure 5.5). More generally, in cases where the posterior geometry does not frustrate MCMC,

we may expect full HMC to outperform the integrated Laplace approximation, especially if the

underlying optimization problem is difficult.

5.7 Discussion

I propose a generalization of the adjoint-differentiated Laplace approximation by (i) expand-

ing the algorithm to work on three Newton solvers, using B-matrices as unifying framework, and

(ii) fully automating the differentiation of the likelihood. The resulting implementation is more

flexible and slightly faster than the original method which uses analytical derivatives. This greatly
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Figure 5.4: Effective sample size obtained with full HMC and the integrated Laplace approxima-
tion on a population pharmacokinetic model. The dotted line represents the actual sample size.
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Figure 5.5: Effective sample size per second obtained with full HMC and the integrated Laplace
approximation on a population pharmacokinetic model
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facilitates implementing the method in software for a broad range of likelihoods. The proposed

implementation also makes it straightforward to explore less conventional models such as the pop-

ulation pharmacokinetic model in Section 5.6.

Once we consider a rich enough space of models, it becomes clear that the integrated Laplace

approximation confronts us to three challenges:

(i) Quality of the approximation. As we move away from log-concave likelihoods and the

theory that supports them, how can we asses whether the approximation is reasonable? The

population pharmacokinetic example showcases the approximation can be good in an un-

orthodox setting. In other cases with a non-log-concave likelihood, the conditional posterior

of the latent variable can be multimodal and therefore not well approximated by a Laplace

approximation; this problem typically also incurs challenges when computing the approxi-

mation (e.g. Vanhatalo, Jylänki, and Vehtari 2009). Developing inexpensive diagnostic tools

to confirm this without running a golden benchmark remains an open problem. Candidate di-

agnostics include importance sampling (Vehtari et al. 2019), leave-one-out cross-validation

(Vehtari et al. 2016), and simulation based calibration (Talts et al. 2020).

(ii) Optimization. Can we efficiently compute the Laplace approximation? The answer

to this question varies between likelihoods, and furthermore the hyperparameter values we

encounter as we run MCMC.

(iii) Differentiation: One persistent limitation is that any operation used to evaluate the log

likelihood must support both forward and reverse mode automatic differentiation in order to

compute higher-order derivatives. For implicit functions, we will likely need higher-order

adjoint methods to insure an efficient implementation.

The general adjoint-differentiated Laplace approximation is prototyped in an experimental

branch of Stan. It is straightforward to embed the Laplace approximation in HMC, as I did in

Section 5.6, and furthermore in any gradient-based inference algorithm supported by Stan includ-

ing penalized optimization, automatic differentiation variational inference (Kucukelbir et al. 2017),
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and the prototype pathfinder (Zhang et al. 2021). Studying the use of different inference algorithms

for the hyperparameter presents an exciting avenue of research.

5.8 Code

The prototype general adjoint-differentiated Laplace approximation for the Stan-math C++ li-

brary can be found at https://github.com/stan-dev/math, under the branch experimental/laplace.

Code to expose the suite of Laplace functions to the Stan language can be found at https:

//github.com/stan-dev/stanc3/tree/update/laplace-rng. Instructions on in-

stalling Stan with the relevant branches, along with several examples, can be found at https:

//github.com/SteveBronder/laplace_testing.
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5.9 Appendix: proof of Lemma 5.4

Following the steps from Rasmussen and Williams (2006) but differentiating with respect to η,

d
dη j

log πG(y | φ) =
∂ log πG(y | φ)

∂η j
+

∑
i

∂ log πG(y | φ)
∂θ̂i

dθ̂i

dη j
. (5.19)

The first “explicit” term is

∂ log πG(y | φ)
∂η j

=
∂ log π(y | θ̂, η)

∂η j
−

1
2
∂ log |K | |K +W−1 |

∂η j
. (5.20)
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We can work out the first term analytically (or with automatic differentiation). Next we consider

the following handy lemma.

Lemma 5.5. Rasmussen and Williams 2006, equation A.15 For an invertible and differentiable

natrix A,
∂

∂θ
log |A| = tr

(
A−1 ∂A

∂θ

)
.

Hence

∂ log |K | |K−1 +W |
∂η j

=
∂ log |K−1 +W |

∂η j

= tr
(
(K−1 +W)−1 ∂W

∂η j

)
= −tr

(
(K−1 +W)−1 ∂∇

2
θ log π(y | θ, η)

∂η j

)
where we recall that η parameterizes W but not K .

Now for the implicit term, we differentiate the self-consistent equation

θ̂ = K∇θ log π(y | θ, η).

Thus

∂θ̂

∂ηl
= K

[
∂

∂η
∇θ log π(y | θ, η) +

∂∇θ log π(y | θ, η)
∂θ̂

∂θ̂

∂ηl

]
= K

[
∂

∂η
∇θ log π(y | θ, η) −W

∂θ̂

∂ηl

]
,

equivalently,

∂θ̂

∂ηl
= (I + KW)−1K

∂

∂η
∇θ log π(y | θ, η).
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Putting it all together

∂ log πG(y | φ)
∂ηl

=
∂ log π(y | θ̂, η)

∂ηl

+
1
2

tr

(
(K−1 +W)−1 ∂∇

2
θ log π(y | θ̂, η)

∂η j

)
+

n∑
i=1

∂ log πG(y | φ)
∂θ̂i

(I + KW)−1K
∂

∂ηl
∇θ log π(y | θ, η),

where

∂ log πG(y | φ)
∂θ̂i

= −
1
2
∂

∂θ̂i
log |K−1 +W |

= −
1
2

tr
(
(K−1 +W)−1 ∂W

∂θi

)
=

1
2

[
(K−1 +W)−1]

ii
∂3

∂θ3
i

log π(y | θ̂, η),

with the last line holding only in the special case where the Hessian is diagonal (Rasmussen and

Williams 2006, equation 5.23). �
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Chapter 6: Simulating Ising and Potts models at critical and cold

temperatures using auxiliary Gaussian variables

CHARLES C. MARGOSSIAN1 AND SUMIT MUKHERJEE1

Ising and Potts models are an important class of discrete probability distributions which origi-

nated from Statistical Physics and since then have found applications in several disciplines. Simu-

lation from these models is a well known challenging problem. In this paper, we propose a class of

MCMC algorithms to simulate from both Ising and Potts models, by using auxiliary Gaussian ran-

dom variables. Our algorithms apply to coupling matrices with both positive and negative entries,

thus including Spin Glass models such as the SK and Hopfield model. In contrast to existing meth-

ods of a similar flavor, our algorithm can take advantage of the low-rank structure of the coupling

matrix, and scales linearly with the number of states in a Potts model. We compare our proposed

algorithm to existing state of the art algorithms, such as the Swendsen-Wang and Wolff algorithms

for Ising and Potts models on graphs, and the Heat Bath for Spin Glass models. Our comparison

takes into account a wide range of coupling matrices and temperature regimes, focusing in partic-

ular on behavior at or below the critical temperature. For cold systems, augmenting our algorithm

with a tempering scheme yields significant improvements.

6.1 Introduction

The Ising model is a probability distribution on the space of binary vectors of size n, whose

components are allowed to take two values, often termed spins, which are traditionally taken to

{0,1} or {−1,1}. The Ising model was first introduced in Statistical Physics (Ising 1925) to study

ferromagnetism. The Potts model (Potts 1952) generalizes the Ising model to q ≥ 2 states, where

1Columbia University, Department of Statistics
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the states can be taken to be [q] := {1,2, . . . ,q} without loss of generality. With this choice, the

Potts model is given by the following probability mass function on [q]n:

P(X = x) =
exp

(
β
2
∑n

i,j=1 An(i, j)1{xi = x j}

)
Z(β, An)

. (6.1)

Here β > 0 is the inverse temperature parameter; the coupling matrix An is a symmetric matrix

which controls the dependence between the components of X, and Z(β, An) is the normalizing

constant, also termed the partition function. We assume that the diagonal entries of An equal 0,

noting that this does not have any impact on the model (6.1). Since their inception, both the Ising

and Potts models have found applications in a wide range of disciplines, ranging fromf Image

Processing, Protein Folding, Neuroscience, and Social Sciences. One of the main reasons for the

popularity of these models is that they are perhaps the simplest models which exhibit non-trivial

dependence across their components.

6.1.1 Examples of Ising and Potts models

In the particular case where the coupling matrix is a scaled adjacency matrix of a graph Gn,

the Ising/Potts model is a discrete Markov random field. Of particular interest are the Ising/Potts

models on the following graphs:

• Curie-Weiss model. Here Gn is the complete graph, and An(i, j) = 1
nδi, j ;

• Ising model on the integer lattice. Here An is the adjacency matrix of a sub-cube of the

integer lattice [1,n1/d]d (assume n1/d is an integer for simplicity);

• Ising model on random graphs. Here An =
1

d̄(Gn)
Gn, where d̄(Gn) is the average degree of

the graph Gn, and Gn is random (e.g. Erdős-Rényi random graphs, Random regular graphs,

graphons).

On the other hand, if the coupling matrix An is allowed to take both positive and negative real

entries, then the corresponding Ising model is typically referred to as Spin Glass in the literature.
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The two most commonly studied examples of Spin Glass models are the following:

• Sherrington Kirkpatrick model. Here {An(i, j)}1≤i< j≤n
i.i.d.
∼ N(0,1/n));

• Hopfield model. Here An =
1

max(n,d)η
′η, where η is a d × n matrix of i.i.d. Rademacher

random variables.

In all these examples the scaling of An is done to ensure that the log partition function scales in a

non-trivial manner for large n. To discuss the scaling choices, we introduce the following standard

asymptotic notations:

Definition 6.1. Suppose {an}n≥1 and {bn}n≥1 are two positive real sequences. We will say

an = o(bn) or an � bn if lim
n→∞

an

bn
= 0,

an = O(bn) if lim sup
n→∞

an

bn
< ∞,

an = Θ(bn) if an = O(bn) and bn = O(an).

Throughout the paper, all scalings of An are chosen such that log Z(β, An) = Θ(n), i.e. the log

partition function scales linearly in n as n → ∞. This choice of scaling ensures that the model

has a non-trivial phase transition in the parameter β, which is of interest in Statistical Physics and

Probability (cf. Basak and Mukherjee 2017, and references therein). One sufficient condition for

log Z(β, An) = Θ(n) is λmax = Θ(1), where λmax denotes the largest eigenvalue of An. Except

for very special cases and small systems, we cannot compute the normalizing constant Z(β, An) in

(6.1). This means various quantities of interest are intractable, including the partition function and

other derived quantities, and need to be estimated, for instance, using Markov chains Monte Carlo

(MCMC) methods.

6.1.2 Existing methods

Drawing samples from Ising/Potts models can be a challenging task, with the performance

and even applicability of existing methods depending on the type of coupling matrix An and the
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system’s “temperature” β−1. Perhaps the most popular methods in Physics are auxiliary cluster

algorithms, notably the Swendsen-Wang and Wolff algorithms (Swendsen and Wang 1987; Wolff

1989), which continue to be used for high-precision Monte Carlo estimation (e.g. Ferrenberg, Xu,

and Landau 2018). These methods are particularly well suited for studying systems at critical and

cold temperatures, however they only apply to Ising/Potts models defined on graphs. For Spin

Glass models, a well-studied method is Heat Bath, also termed the sequential Gibbs, (e.g Neal

1993), often augmented with a tempering scheme when studying cold systems (e.g. Swendsen and

Wang 1986; Hukushima, Takajama, and Yoshina 1998; Katzgraber, Palassini, and Young 2001;

Yucesoy 2013).

A relatively recent approach is to introduce an auxiliary multivariate Gaussian variable, Z, and

construct MCMC over the augmented space, (X,Z), to sample from binary random Markov fields, a

special class of Ising models where An is a (scaled) adjacency matrix (Martens and Sutskever 2010;

Zhang et al. 2012). Our work generalizes this approach to Potts models. Martens and Sutskever

(2010) note that their method extends to the non-binary case, by introducing an nq−multivariate

normal, but this results in a Gibbs sampler with computational complexity O(n3q3+mn2q2), where

m is the number of sampling iterations. The algorithm we propose achieves O(n3 + mn2q) com-

plexity, and a suitable low-rank approximation can further reduce this cost. We also note that in

their study Martens and Sutskever (2010) found the Auxiliary Gaussian Gibbs sampler did not

outperform the Heat Bath, which stands in contrast to our results. By examining a broad range

of coupling matrices and temperatures, we identify the model regimes where using an auxiliary

Gaussian works best and where it fails.

Rather than use a block Gibbs sampler, it is possible to sample over the marginal space of Z

using Hamiltonian Monte Carlo (HMC), a gradient-based algorithm. X is then recovered using its

distribution conditional on Z (Zhang et al. 2012). We will see that our method is amiable to this

scheme, however this paper focuses on a block Gibbs sampler which is more straightforward to

analyze and implement. Preliminary experiments we conducted found that HMC, as implemented

in Stan (Carpenter et al. 2017), struggles to explore the marginal space of Z, yielding poor mixing
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in the X space. In line with the theory developed by Zhang et al. (2012), we conjecture that HMC

works well only on a specific class of Ising/Potts models and leave this line of research to future

investigation. There also exist general purpose gradient-based algorithms which attempt a contin-

uous relaxation of discrete systems (e.g. Grathwohl et al. 2021). How these methods compare to

specialized methods and our algorithms for Ising/Potts models is the object of upcoming work.

6.2 Choices of Auxiliary Gaussian

6.2.1 Auxiliary Gaussian for Potts

Given a vector x = (x1, . . . , xn) ∈ [q]n, for every ` ∈ [q] define a vector y` := (1{x1 =

`}, . . . ,1{xn = `}))
′ ∈ Rn. In other words, the ith element of y` is 1 if xi = `, and 0 otherwise. This

sets up a one-to-one map between x and (y1, . . . ,yq). Then we have

1
2

n∑
i,j=1

An(i, j)1{xi = x j} =
1
2

q∑̀
=1

y′`Any` .

The term 1
2y′

`
Any` looks like the log moment generating function of a multivariate Gaussian, except

that the matrix An is not non-negative definite, as the diagonal entries of An equal 0. Let λmin be

the smallest eigenvalue of An. Since changing the diagonal entries of An does not impact the Potts

model, we can replace An by An +λIn where λ > |λmin |, and An +λIn is positive definite. To check

that the model (6.1) does not change under this transformation, note that

q∑̀
=1

y′`(An + λIn)y` −
q∑̀
=1

y′`Any`

=λ

q∑̀
=1

y′`y` = λ
q∑̀
=1

n∑
i=1

1{xi = `} = nλ,
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where the last equality follows from the fact
∑q
`=1 1{xi = `} = 1 for each i ∈ [n]. Setting Bn :=

β(An + λIn), the marginal probability mass function of X can be written as

P(X = x) =
exp

(
1
2
∑q
`=1 y′

`
Bny`

)
Z(β,Bn)

. (6.2)

Given X = x, let Z1, . . . ,Zq be mutually independent Gaussian random vectors with

Z` ∼ N
(
y`,B−1

n

)
. (6.3)

Then one can check that given Z := (Z1, . . . ,Zq) the random variables (X1, . . . ,Xn) are mutually

independent, with

P(Xi = ` | Z) =
exp

(∑n
j=1 Bn(i, j)z`( j)

)
∑q

a=1 exp
(∑n

j=1 Bn(i, j)za( j)
) . (6.4)

Also, the marginal density of Z is proportional to

exp
(
−

1
2

q∑̀
=1

z′`Bnz`
) n∏

i=1

( q∑̀
=1

exp
( n∑

j=1
Bn(i, j)z`( j)

))
. (6.5)

The proofs of both (6.4) and (6.5) are in the Supplement.

6.2.2 Sampling based on an Auxiliary Gaussian

By iterating between (6.3) and (6.4), we obtain a block Gibbs sampling algorithm, where one

alternates between sampling (Z | X) and (X | Z) (Algorithm 6.1). The proposed scheme is

analogous to a Gibbs sampler, with stationary distribution π(q) = π(x,z), where q = (x,z). The

multidimensional “coordinates” which get updated are x and z. The theoretical results for the Gibbs

sampler thus carry over and can be explicitly derived by, for example, following the proof by Neal

(1993). Furthermore having a chain q(1),q(2), · · · ,q(k) with invariant distribution π(q) immediately

gives us a chain with invariant marginal distribution π(x).

A key observation is that the covariance for the Z`’s remains unchanged between sampling
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Algorithm 6.1: Block Gibbs sampling for Potts model to compute m approximate sam-
ples

1 input: initial state, x(0); coupling matrix, An; inverse temperature, β; number of iterations,

m; perturbation, ε .

2 λ← |λmin(An)| + ε . λmin(An) = smallest eigenvalue of An.

3 Bn ← β(An + λIn)

4 Ln ← Cholesky-decompose([Bn]
−1)

5 for i ∈ {1, · · · ,m} do
6 for ` ∈ {1, · · · ,q} do
7 y` ←

(
1
{
x(i−1)

1 = `
}
, ...,1

{
x(i−1)

n = `
})

8 z∗n ∼ Normal(0, In)

9 z` ← Lnz∗n + y`
10 end
11 Pn = Bn[z1, ...,zq]

12 for j ∈ {1, · · · ,n} do
13 pq = (exp(Pn( j, `)), ` ∈ [q]) . vector of unnormalized probability for each state.

14 x(i)j ∼ Categorical(pq/
∑q

a=1 pq(a))

15 end
16 end
17 return: x(1),x(2), ...,x(m).
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iterations. Hence we only need to perform once the Cholesky decomposition and inversion of

Bn = βAn + λIn required to sample Z` (6.3). This is an expensive operation with complexity

O(n3). Within each iteration, the cost is dominated by 2q matrix-vector multiplications, each with

cost O(n2). The complexity of the algorithm is therefore O(n3 + mn2q). Provided n � m, the cost

of the initial inversion and Cholesky decomposition is marginal.

6.2.3 Low-rank Auxiliary Gaussian

For certain models, the coupling matrix Bn may be low-rank, either exactly or approximately.

In this case, it is reasonable to believe that we don’t have to work with n-dimensional Gaussian

vectors, but instead with a k-dimensional Gaussian vector, where k = rank(Bn). In fact, such algo-

rithms have already been explored in the setting of Ising models for the complete graph (Mukher-

jee, Mukherjee, and Yuan 2018), where An =
1
n11′ − 1

n In has eigenvalues (1 − 1
n,−

1
n, . . . ,−

1
n ),

where the multiplicity of the eigenvalue −1
n is n − 1. Even though rank(An) = n in a strict sense,

we can add −1
n In to An to get the matrix 1

n11′, which has eigenvalues (1,0, . . . ,0), and rank 1. A

similar approach was successful in analyzing the Ising model of a regular graph with degree ∝
√

n

(Mukherjee and Xu 2021), where rank(An) ∝
√

n.

To propose a general version of the low-rank algorithm, let Bn = β(An + |λmin |In). Note it is

sufficient to augment the diagonal elements with |λmin |, rather than λ > |λmin |. Let
∑n

i=1 µipip′i de-

note the spectral expansion of Bn, where (µ1, . . . , µn) are non-negative, and arranged in decreasing

order, and pi ∈ R
n is the eigenvector corresponding to eigenvalue µi. Fixing ε > 0, we introduce

the low-rank approximation

B̃n =
∑

i:µi>ε
µipip′i .

In other words, we treat the eigenvalues below ε as 0. Let k ≤ n denote the rank of B̃n, i.e. k :=∑n
i=1 1{µi > ε}. Let Q be the Potts model with Bn replaced by B̃n, i.e.

Q(X = x) =
exp(12

∑n
i,j=1 B̃n(i, j)1{xi = x j})

Z(β, B̃n)
. (6.6)
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The Hamiltonian of the probability measure Q can be written as

1
2

q∑̀
=1

y′` B̃ny` =
1
2

q∑̀
=1

k∑
j=1

µ j(p′jy`)
2. (6.7)

This representation motivates the following new auxiliary variable. Given X = x, let Z :=

{Z`( j)}`∈[q],j∈[k] be kq mutually independent Gaussians with

Z`( j) ∼ Normal(p′jy`,1/µ j). (6.8)

Then the conditional distribution of X given Z is given by

P(Xi = ` | Z) =
exp

(∑k
j=1 µ j z`( j)p j(i)

)
∑q

a=1 exp
(∑k

j=1 µ j z`( j)p j(i)
) , (6.9)

which is straightforward to sample from. Also, the marginal density of Z has a similar low-rank

structure, and is proportional to

exp
(
−

1
2

q∑̀
=1

k∑
j=1

µ j z`( j)2
) n∏

i=1

( q∑̀
=1

exp(
k∑

j=1
µ j z`( j)p j(i))

)
(6.10)

The proof of both (6.9) and (6.10) are given in the Supplementary Material.

By iterating between the steps (6.8) and (6.9), we again have a block Gibbs sampler. We no

longer need to do an inversion and Cholesky decomposition, but we do one Eigen decomposition

instead, which incurs the same complexity O(n3). The cost per iteration is dominated by (i) cal-

culating the mean of each univariate normal, that is doing qk inner-products of n-vectors, and (ii)

calculating the probability of sampling each state for each particle, which is qn inner-products of

k-vectors. The resulting Gibbs sampler has complexity O(n3 + mqnk). This is an improvement

over the previously obtained complexity O(n3+mqn2). In particular the improvement is significant

when m � n � k.
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Remark 6.1. Another MCMC algorithm arises out of our analysis, using (6.5) (or (6.10)), which

gives the unnormalized marginal density of the matrix Z. Since Z is continuous, we can use

gradient-based algorithms to simulate Z ,and subsequently sample X from (6.4) (or (6.9)). A low-

rank approximation of An will give a low-rank version of the density of Z, which also improves the

computation of gradient-based algorithms.

Remark 6.2. The proposed auxiliary Gaussian variables decouple the elements of X in the more

general case where the Potts model admits a non-zero bias or exterior magnetic field b ∈ Rq. In

this scenario, the probability mass function is

P(X = x) ∝ exp

(
β

2

n∑
i,j

An(i, j)1{xi = x j} +

n∑
i=1

q∑̀
=1

b(`)1{xi = `}

)
. (6.11)

The conditional distribution is updated as follows:

• Auxiliary Gaussian for Potts (6.3)

P(Xi = ` | Z) =
exp

(∑n
j=1 Bn(i, j)z`( j) + b(`)

)
∑q

a=1 exp
(∑n

j=1 Bn(i, j)za( j) + b(a)
) . (6.12)

• Low-rank Auxiliary Gaussian (6.8)

P(Xi = ` | Z) =
exp

(∑k
j=1 µ j z`( j)p j(i) + b(`)

)
∑q

a=1 exp
(∑k

j=1 µ j z`( j)p j(i) + b(a)
) , (6.13)

6.2.4 Low-rank approximation error

It is natural to guess that the low-rank Auxiliary Gaussian method outperforms the usual Aux-

iliary Gaussian Method when the matrix An is approximately of low-rank. A more refined question

is whether we can provide rigorous bounds on the error in this approximate algorithm, which al-

lows the user to choose the tuning parameter ε. To this effect, we state the following lemma, whose

proof is included in the Supplementary Material.
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Lemma 6.1. Let P be the original Potts measure given in (6.2), and let Q be the low-rank Potts

measure given in (6.6). Then we have the following results:

(i) The log normalizing constant between the two models satisfies

| log Z(β,Bn) − log Z(β, B̃n)| ≤
1
2

nβε.

(ii) With KL(.|.) denoting the Kullback-Leibler divergence between two probability measures,

we have

max
(
KL(P|Q),KL(Q|P)

)
≤ nβε.

The low-rank Auxiliary Gaussian gives a parsimonious representation only if k = rank(B̃n) �

n. The following lemma provides a simple sufficient condition as to when this happens.

Lemma 6.2. Suppose λmax and λmin are the largest and smallest eigenvalues of An. Let Bn :=

β(An + |λmin |In), and B̃n be its low-rank approximation for some ε > 0. If

λmax = O(1), λmin = o(1), (6.14)

then kn := rank(B̃n) = o(n).

The proof of this lemma is included in the Supplementary Material.

The above lemma raises the question of whether there are natural examples of matrices An

which satisfy (6.14). Below we give some examples of matrices An which satisfy (6.14), and some

examples which don’t.

• Satisfies (6.14): Ising model on the Complete Graph (Curie-Weiss model), Random regular

graphs and Erdős-Rényi graphs with large average degree, Hopfield model with m � n.

• Does not satisfy (6.14): Ising model on graphs with bounded average (including Ising model

on the integer lattice), Hopfield model with m = n, SK model.

If (6.14) is not satisfied, then it seems reasonable to prefer the regular version of the Auxiliary
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Gaussian algorithm over the low-rank version. Numerical experiments suggest the regular version

is slightly faster when An is full-rank.

6.3 Numerical experiments

We now study the performance of various MCMC samplers on a range of Potts models.

When An is the scaled adjacency matrix of a graph Gn, the state of the art algorithms are based

on constructing auxiliary clusters, which form a random partition of the vertices of the nodes of

Gn. Once an auxiliary cluster has been constructed, all the nodes in one cluster are now assigned

a common new spin value according to some probability. Thus potentially many states can be

updated at once, which allows for a fast exploration of the sample space. The most well known

examples in this class are the Swendsen-Wang and Wolff algorithms (Swendsen and Wang 1987;

Wolff 1989). We find in our experiments that the Wolff algorithm is more efficient than Swendsen-

Wang, a result consistent with the Physics literature (e.g Wolff 1989; Landau and Binder 2009). For

this reason, we only report comparison of our Auxiliary Gaussian algorithms (both the original and

the low-rank version) with the Wolff algorithm. In the Supplementary Material, we offer a brief

review of auxiliary cluster algorithms. Another algorithm we use to compare our results is the

classic Heat Bath algorithm.

For the spin glass models we no longer have access to auxiliary cluster algorithms. In this case

we only use the Heat Bath algorithm as the benchmark, and compare it with our proposed Auxiliary

Gaussian (AG) samplers. In the special case of the Ising model where q = 2, we use a specialized

AG algorithm which reduces the dimension of the auxiliary Gaussian variables from 2n to n (2k to

k when doing a low-rank approximation) which improves the performance of the AG sampler (see

Supplementary Material for details on this specialized version of the algorithm for q = 2). The

non low-rank specialization reduces to the auxiliary Gaussian variable based algorithm introduced

by Martens and Sutskever (2010). All samplers are implemented in R using the same packages to

attempt a fair comparison. As we explain below, the utility of each method depends heavily on the

coupling matrix An, and the inverse temperature β.
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6.3.1 Performance metrics

Our goal is to construct Monte Carlo estimators for EPφ(X), where φ : [q]n → R, via the

sample average

δm =
1
m

m∑
i=1

φ
(
x(i)

)
.

Here {x(1), . . . ,x(m)} represent the output of the first m iterations of the MCMC algorithm. If

VarPφ(X) < ∞ and the samples are i.i.d., δm is unbiased, and has variance Var(δm) = VarPφ(X)/m.

Unfortunately the samples we generate with MCMC are approximate: they are not independent

and, for a finite number of iterations of our MCMC algorithm, they are biased. Practitioners typi-

cally expect that, after a certain number of iterations, the Markov chain converges to a stationary

distribution and is unbiased. The first samples are discarded, thereby removing the initial bias of

the so-called “burn in” phase. However, depending on the inverse-temperature parameter β (and

in particular for large β), MCMC algorithms for Ising and Potts models can be notoriously slow

to mix: even after many iterations, they may fail to overcome the initial transient bias. One way

to diagnose MCMC convergence is to run multiple chains with different initializations, and check

that they produce Monte Carlo estimators in good agreement. We perform such a check with the

rank-normalized R̂ statistics developed by Vehtari et al. (2020), which estimates ratio of the vari-

ance across all chains over the variance within each chain. If the chains are mixing, R̂ should be

close to 1, and eventually it should converge to 1 as the number of iterations converges to +∞.

Another sanity check is to confirm that Monte Carlo estimators produced by different algorithms

are in agreement with one another.

Once we trust our estimator to be unbiased, we examine the effective sample size, defined by

meff =
Varφ(X)
Var(δm)

.

If the samples are independent, then meff = m. MCMC typically generates correlated samples,

which incurs a loss of information, in which case meff < m. A popular method for computing meff
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Figure 6.1: Effective sample size per second for grid model.

is via an autocorrelation function (c.f. Geyer 2012). We compute R̂ and meff using the R package

Posterior (Gabry, Buekner, and Kay 2021).

Our performance metric is the effective sample size per second, meff/s. The effective sample

size alone considers how well the MCMC algorithm mixes over iterations but it does not consider

the computation cost of each iteration. A useful sampler finds a good balance between computing

iterations quickly, and generating samples with a low autocorrelation. We focus on the summary

function φ(x) = β
∑n

i,j=1 An(i, j)1{xi = x j}, which is the system’s Hamiltonian.

6.3.2 Potts models on a graph

We begin with the case where An is the adjacency matrix of a graph Gn scaled by its average

degree. We consider two choices of Gn which are of wide interest in Statistical Physics: the Ising

model on the integer lattice and the Curie-Weiss model. For the subsequent experiments in this

section, we run 4 chains each for m = 10,000 iterations, and discard the first 1,000 iterations of

each chain as burn-in.

Lattice graph. The two-dimensional lattice graph [1,
√

n]2 with two states (i.e. q = 2) is pos-

sibly the most well-studied example. We examine a 16 × 16 graph (i.e. n = 256), and consider the

cases q = 2,4. We focus on a parameter range in β around the critical temperature βc(q), which

is approximately 0.44 and 0.55 for q = 2 and q = 4 respectively, as reported in Monroe 2002.

Overall the AG sampler offers the best performance, as measured by meff/s (Figure 6.1). We note,

however, a very sharp drop in performance of the AG algorithm as β increases beyond criticality,
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Figure 6.2: Effective sample size per second for Curie-Weiss model.

for q = 2. In comparison, for q = 4 our algorithm performs much better at or beyond criticality.

This may be because the larger sample space allows for more exploration, and as such decreases

autocorrelation between updates. In the case q = 2, the Wolff sampler, by contrast, is more robust

to large β; we believe this is because at cold temperatures the coupling between nodes is stronger,

allowing the Wolff algorithm to construct large auxiliary clusters and update more nodes at once.

These global updates lead to a decrease in autocorrelation. The expected slow down at critical

temperature for q = 2 is apparent for all the three samplers.

Curie-Weiss model. In this model An =
1
n11′− 1

n In is the scaled adjacency matrix of a complete

graph, where each node is connected to every other node. We once again consider the cases

q = 2,4, with n = 256. The critical value βc(q) is 1 and ∼1.64 for q = 2 and q = 4 respectively

(e.g Bollobás, Grimmett, and Janson 1996), around which we focus our simulations. Adjusting the

diagonal elements, we obtain a rank-1 coupling matrix on which we can apply the low-rank AG

sampler. The same update rule is obtained by truncating the spectral expansion of Bn, using the

threshold ε = 10−12 which is slightly above machine precision, as our tolerance for eigenvalues.

Figure 6.2 shows the performance measurements. In the Ising case (i.e. q = 2), the AG samplers

offer the best performance by several orders of magnitude. The low-rank sampler offers a ∼3 - 4

fold speed up over the regular AG sampler. The story is quite different at q = 4. As we near the

value β = 1.65, we observe a sharp drop in efficiency for the Heat Bath and the AG samplers.

For β > 1.65, the chains fail to mix, as notably indicated by the R̂ statistic, and produce wildly

inaccurate estimates of Eφ(X). A previous study found that the Heat Bath undergoes a dramatic
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slow down near β ≈ 1.65 (Cuff et al. 2012). Clearly this behavior also affects the AG samplers.

The Wolff and Swendsen-Wang algorithms are by contrast not affected by this phenomenon, and

produce accurate Monte Carlo estimates for β > 1.65.

6.3.3 Spin Glass Potts models

In a Spin Glass model, the entries in An can take both positive and negative values. Two

important examples are the Hopfield model and the Sherrington-Kirkpatrick (SK) models. For

these problems, the Wolff and Swendsen-Wang algorithms are no longer an option.

Hopfield model. As before, we run 4 chains each with m = 10,000 sampling iterations,

discarding the first 1,000 samples as a burn-in phase. Let η ∈ Rd×n be a matrix of i.i.d random

variables with P(ηik = ±1) = 1/2, and let

An = max(n, d)−1η′η. (6.15)

By convention we should zero out the diagonals of An. But since changing diagonal entries does

not impact the distribution, and (6.15) is the commonly specified form of the Hopfield matrix, we

will use (6.15). Now An can take values which are positive, negative, or zero, meaning the spins Xi

can be correlated, anti-correlated, or uncorrelated. It is usually not possible to set each node to be

equal, so as to maximize An(i, j)1{xi = x j} for all (i, j), as a result of which the emergent system

is said to be frustrated.

In this case, if d � n, then standard concentration results show that An = n−1η′η ≈ In, which

has all positive eigenvalues. Thus for d � n, all eigenvalues of An − diag(An) should be close to

0 with high probability. Consequently, (6.14) will hold, and so the low-rank algorithm should be

used. As d increases, the low-rank algorithm should become worse, until it becomes comparable

to (or slightly worse than) the regular AG algorithm. We use this example to examine the validity

of the above prediction, and to compare the regular and the low-rank AG samplers across varying

ranks. We set β = 1, q = 4, n = 256, and vary d from 1 to 100. Setting ε = 10−12, as we did
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with the Curie-Weiss model, we find the low-rank AG incorrectly treats An as full-rank. This is

due to the numerical errors that arise when computing eigenvalues. Setting ε = 10−10 fixes the

issue for this particular problem. Overall the AG samplers offer performance which is two orders

of magnitude faster than the Heat Bath. The low-rank AG offers the best performance for small d,

but this advantage vanishes as the rank of An increases (Figure 6.3).

Remark 6.3. In all our experiments, the regular and low-rank AG generate roughly the same

effective sample size. The difference in performance is therefore driven by the difference in the

computational cost of each iteration.
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Figure 6.3: Effective sample size per second for Hopfield Potts model with q = 4 and β = 1.

Cold SK model. In the SK model, the elements of a coupling matrix {An(i, j)}1≤i< j≤n are

mutually independent, drawn from a standard normal scaled by 1/
√

n, equivalently a normal with

variance 1/n:

An(i, j) = An( j, i) ∼ Normal
(
0,n−1

)
.

This coupling matrix unfortunately does not admit a good low-rank approximation (c.f. Basak and

Mukherjee 2017). An important application of this model in Physics is the study of spin glass

systems at cold temperatures, i.e. below the critical temperature (e.g Katzgraber, Palassini, and

Young 2001; Yucesoy 2013). We have seen in our previous experiments that the performance of
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the Heat Bath and the AG sampler suffers as β increases. This is also true for the SK model. For

high β, the Potts model becomes highly multimodal, resulting in a slow or incomplete exploration

by the Markov chains.

Tempering algorithms can mitigate this problem and be coupled with any sampling scheme.

The tempered Heat Bath is a popular method to draw samples from cold Spin Glass models (e.g

Swendsen and Wang 1986; Hukushima, Takajama, and Yoshina 1998). As we shall see, this

strategy is further enhanced when we replace the Heat Bath with an AG sampler (Figure 6.4). A

tempering algorithm runs multiple chains or replicas over a sequence of temperatures for a set

number of iterations and then exchanges, with a certain probability, the states of two replicas with

a neighboring temperature. The probability of exchanging two neighboring replicas is chosen so as

to maintain detailed balance. At high temperatures, the Markov chain can move more easily across

the target space and overcome the energy barriers between modes, before being cooled down again

to sample at the temperature of interest. Naturally we can run replicas in parallel.

When implementing a tempering algorithm, we need to choose the number of replicas and

their respective temperatures. The first replica is at the cold temperature of interest. We then

progressively increase the temperature of each replica to insure that the exchange probability is

high, and that we eventually reach a warm temperature at which the sampler is not frustrated

by high energy barriers. Additional details about the tempering algorithm can be found in the

Supplementary Material.

In our experiment, the target inverse-temperature is β = 3, which is way above the critical

parameter. We create 11 replicas with β = (0.5,0.75,1,1.25,1.5,1.75,2,2.25,2.5,2.75,3). We find

this yields reasonable, if somewhat uneven, acceptance rates for the exchange proposals. A more

principled approach to setting temperatures is described by Hukushima, Takajama, and Yoshina

1998. In total, we attempt 40 exchanges and run 1,000 iterations between exchanges, for a total

of 40,000 iterations. As before, we run 4 chains – or here 4 sets of replicas – with different

initializations to compute R̂ and monitor whether the chains are mixing. The size of the system is

n = 128.
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Figure 6.4 presents the results of our experiment. We measure the efficiency of a tempered AG

sampler, a tempered Heat Bath, and a regular AG sampler. The non-tempered AG suffers at colder

temperatures and for β > 2.5, AG produces Monte Carlo estimates in disagreement with competing

algorithms; furthermore the large R̂ values (R̂ > 1.2) suggest the Markov chains are not mixing.

The tempered AG offers the best performance across all temperatures. We note that at β = 3,

for both tempered algorithms, R̂ ≈ 1.13, which suggests we at least ought to run more iterations

to produce more accurate estimates. Finally while tempering offers significant improvement, the

sharp drop in performance with increasing β is still present.

6.4 Discussion

AG samplers offer a competitive and at times largely superior performance across a range of

models, particularly in high temperature regimes and at criticality. There are some exceptions to

this in the low temperature regime, such as the Ising model on the 2D lattice (q = 2), and the Curie-

Weiss Potts models with q = 4. Similar to the Heat Bath algorithm, the AG algorithms are sensitive

to the system’s temperature, and tempering can alleviate this issue. Examining the alternative
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algorithms (cluster algorithms and the Heat Bath), we find there is no universal algorithm that

efficiently handles all the pathologies we may encounter when dealing with Ising and Potts models

for various coupling matrices across different choices of q. Care must be taken when picking a

sampler.

Various operations in Algorithm 6.1 can be parallelized to further improve performance. This

observation also holds for the low-rank AG sampler, and gradient-based samplers that target the

marginal distribution of Z. As such, Auxiliary Gaussian methods are amiable to use on accelerators

such as GPUs. We remind readers that high-performance computing should be used responsibly,

given its energy consumption.
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6.6 Appendix (Supplementary Material)

The Appendix contains proofs missing in the main body. We derive the conditional and

marginal distributions, that arise when we introduce either a regular or low-rank auxiliary Gaus-

sian variable for Potts models. We prove Lemma 6.1, which characterizes the error committed in

using the low-rank algorithm, and Lemma 6.2, which characterizes the type of coupling matrices

for which we may want to use a low-rank algorithm. Specialized algorithms for the Ising model

(q = 2) are derived. We also provide an overview on auxiliary cluster and tempering algorithms.

The code used for our numerical experiments can be found at https://github.com/

charlesm93/potts_simulation. The ReadMe provides instructions on how to run the

code.
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6.6.1 Missing proofs

Conditional and marginal distributions when using the regular Auxiliary Gaussian

We begin by proving Equations (6.4) and (6.5). Recall from (6.2) that the marginal p.m.f. of X

under P is proportional to

exp
(1
2

q∑̀
=1

y′`Bny`
)
.

Also from (6.3), the conditional density of Z given X = x is proportional to

exp
(
−

1
2

q∑̀
=1
(z` − y`)′Bn(z` − y`)

)
.

Thus, the joint distribution of X and Z is proportional to

exp

(
1
2

q∑̀
=1

[
y′`Bny` − (z` − y`)′Bn(z` − y`)

] )
= exp

(
−

1
2

q∑̀
=1

z′`Bnz` +
q∑̀
=1

z′`Bny`

)
= exp ©­«−1

2

q∑̀
=1

z′`Bnz` +
q∑̀
=1

n∑
i=1

n∑
j=1

z`( j)Bn(i, j)1{xi = `}
ª®¬ . (6.16)

From (6.16), we see that given Z, the random variables (X1, . . . ,Xn) are mutually, independent,

with

P(Xi = ` |Z) ∝ exp
( n∑

j=1
Bn(i, j)z`( j)

)
,

which verifies (6.4). In the case where we have a non-zero bias or magnetic field, one simply adds

n∑
i=1

q∑̀
=1

b(`)1{xi = `}

to the exponent when defining the marginal p.m.f of X and carries this term across all subsequent

calculations to obtain (6.12).

The marginal distribution of Z is obtained from (6.16) by summing over x ∈ [q]n, from which
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(6.5) follows.

Conditional and marginal distributions when using the low-rank Auxiliary Gaussian

Next we prove Equations (6.8) and (6.10). Recall from (6.7) that the marginal p.m.f. of X under

P is proportional to

exp
(1
2

q∑̀
=1

k∑
j=1

µ j(p′j y`)
2
)
.

Also from (6.9), the conditional density of Z given X = x is proportional to

exp
(
−

1
2

q∑̀
=1

k∑
j=1

µ j(z`( j) − p′jy`)
2
)
.

Thus, the joint distribution of X and Z is proportional to

exp ©­«1
2

q∑̀
=1

k∑
j=1

µ j

[
(p′j y`)

2 − (z`( j) − p′jy`)
2
]ª®¬

= exp
(
−

1
2

q∑̀
=1

k∑
j=1

µ j z`( j)2 +
q∑̀
=1

k∑
j=1

µ j z`( j)p′jy`
)

= exp
(
−

1
2

q∑̀
=1

k∑
j=1

µ j z`( j)2 +
q∑̀
=1

k∑
j=1

n∑
i=1

µ j z`( j)p j(i)1{xi = `}
)
. (6.17)

Using (6.17), given Z = z the random variables (X1, . . . ,Xn) are mutually, independent, with

P(Xi = ` |Z) ∝ exp
( k∑

j=1
µ j z`( j)p j(i)

)
,

which verifies (6.9). As in the previous section, the conditional distribution when the bias is non-

zero (6.13) is obtained by adding the bias term to the exponent when defining the marginal p.m.f

of X and carrying this term over the subsequent calculations.

The marginal distribution of Z is obtained from (6.17) by summing over x ∈ [q]n, from which

(6.10) follows.
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Proof of Lemma 6.1

With Bn and B̃n as in the Hamiltonians of the distributions P and Q in (6.2) and (6.6) respec-

tively, for any x ∈ [q]n, we have

��� n∑
i,j=1

Bn(i, j)1{xi = x j} −

n∑
i,j=1

B̃n(i, j)1{xi = x j}

��� =��� q∑̀
=1

y′`(Bn − B̃n)y`
���

≤

q∑̀
=1
‖y`‖22 ‖Bn − B̃n‖2

=‖Bn − B̃n‖2

q∑̀
=1

n∑
i=1

1{xi = `} (6.18)

=n‖Bn − B̃n‖2 ≤ nε. (6.19)

where the last bound uses the definition of B̃n to note that all eigenvalues of Bn − B̃n are smaller

than ε in absolute value. Thus, for any x ∈ [q]n, we have

e
−nβε

2 ≤

exp
(
β
2
∑n

i,j=1 Bn(i, j)1{xi = x j}

)
exp

(
β
2
∑n

i,j=1 B̃n(i, j)1{xi = x j}

) ≤ e
nβε

2 . (6.20)

On summing over x ∈ [q]n, this gives

e−
nβε

2 ≤
Z(β, An)

Z(β, Ãn)
≤ e

nβε
2 , (6.21)

which verifies part (i). For verifying part (ii), taking a ratio of (6.20) and (6.21) we get

e−nβε ≤
P(X = x)
Q(X = x)

≤ enβε,

which gives max(KL(P|Q),KL(Q|P)) ≤ nβε. This verifies part (ii), and hence completes the proof

of the lemma.
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Proof of Lemma 6.2

To begin, we bound k by examining the trace of B2
n , and noting that, per Markov’s inequality,

k ≤
n∑

i=1
µ2

i /ε
2 = tr(B2

n)/ε
2.

Also, we have

tr(B2
n) = tr(A2

n + 2λmin An + λ
2
minIn) = tr(A2

n) + nλ2
min. (6.22)

Combining the above two displays, it suffices to show that the RHS of (6.22) is o(n). Since λmin =

o(1), it suffices to show tr(A2
n) = o(n), which is the focus of the rest of the proof.

To this effect, recall that tr(An) = 0. Thus, with λ1(An), . . . , λn(An) denoting the eigenvalues of

An we have
n∑

i=1
λi(An)1{λi(An) > 0} =

n∑
i=1
|λi(An)|1{λi(An) < 0} ≤ n|λmin |.

This in turn gives

n∑
i=1
|λi(An)| =

n∑
i=1

λi(An)1{λi(An) > 0} +
n∑

i=1
|λi(An)|1{λi(An) < 0} ≤ 2n|λmin | = o(n),

and so

tr(A2
n) =

n∑
i=1

λi(An)
2 ≤ λmax

n∑
i=1
|λi(An)| = o(n),

where the last equality uses the assumption λmax = O(1). This completes the proof of the lemma.
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6.6.2 Specialized Auxiliary Gaussian algorithm for q = 2

Standard Auxiliary Gaussian algorithm

Setting W := Z1 − Z2 and using (6.3), under P we have

(W|X = x) ∼ N(y1 − y2,2B−1
n ). (6.23)

Also, using (6.4), we have

P(Xi = 1|Z = z) =
exp

( ∑n
j=1 Bn(i, j)z1( j)

)
exp

( ∑n
j=1 Bn(i, j)z1( j)

)
+ exp

( ∑n
j=1 Bn(i, j)z2( j)

)
=

exp
(

1
2
∑n

j=1 Bn(i, j)w( j)
)

exp
(

1
2
∑n

j=1 Bn(i, j)w( j)
)
+ exp

(
− 1

2
∑n

j=1 Bn(i, j)w( j)
) , (6.24)

where w j = z1( j) − z2( j). A similar calculation gives

P(Xi = 2|Z = z) =
exp

(
− 1

2
∑n

j=1 Bn(i, j)w( j)
)

exp
(

1
2
∑n

j=1 Bn(i, j)w( j)
)
+ exp

(
− 1

2
∑n

j=1 Bn(i, j)w( j)
) .

Thus, instead of using the 2n dimensional Gaussian Z, one can use the n dimensional Gaussian W ,

and iterate between (6.23) and (6.24), This is the same exact algorithm, but we work with a lower

dimensional representation of the auxiliary variable, which helps in faster computations. We note

that this is the exact same algorithm as Martens and Sutskever (2010) in the Ising case.

Low rank Auxiliary Gaussian algorithm

Setting W := Z1 − Z2 as before, using (6.8) under Q we have

(W j |X = x) ∼ N(p′j(y1 − y2),2/µ j), (6.25)
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with (W1, . . . ,Wk) mutually independent. Also, using (6.9), we have

Q(Xi = 1|Z = z) =
exp

( ∑k
j=1 µ j z1( j)p j(i)

)
exp

( ∑k
j=1 µ j z1( j)p j(i)

)
+ exp

( ∑k
j=1 µ j z1( j)p j(i)

)
=

exp
(

1
2
∑k

j=1 µ jw j p j(i)
)

exp
(

1
2
∑k

j=1 µ jw j p j(i)
)
+ exp

(
−

∑k
j=1 µ jw j p j(i)

) , (6.26)

where w j = z1( j) − z2( j). A similar calculation gives

Q(Xi = 2|Z = z) =
exp

(
− 1

2
∑k

j=1 µ jw j p j(i)
)

exp
(

1
2
∑k

j=1 µ jw j p j(i)
)
+ exp

(
−

∑k
j=1 µ jw j p j(i)

) .
Thus, instead of using the 2k dimensional Gaussian Z, one can use the k dimensional Gaussian W ,

and iterate between (6.25) and (6.26).

6.6.3 Overview of the Swendsen-Wang and Wolff algorithms

The Heat Bath updates one node, x j , at a time, conditional on the distribution of the other

nodes, x− j . As a result, it can take many iterations to meaningfully change x and the produced

samples are strongly correlated. The Swendsen-Wang algorithm attempts to address this issue

by updating large clusters of particles at each iteration. This is done by introducing an auxiliary

random graph, as illustrated in Figure 6.5. Below we provide a sketch of the algorithm:

1. Construct auxiliary clusters until every node belongs to a cluster, per the following steps:

(a) Start a cluster at a random node, xi, which does not already belong to an auxiliary

cluster (call this a free node).

(b) For each free neighbor x j of xi, i.e. such that An(i, j) > 0, if xi = x j , add x j to the

cluster with probability

p(β) = 1 − exp(−2βAn(i, j))
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(c) Continue growing the cluster by repeating the above step for each added node. Once

the cluster stops growing, start a new cluster at one of the free nodes.

2. Once all the nodes have been assigned to a cluster, randomly assign a new state in [q] to each

cluster, where each state has equal probability.

+ + +

- - +

- - +

Figure 6.5: Color-coded random auxiliary clusters on a grid graph. In the Ising model (q = 2),
each particle takes values in {−,+}, referring to the two states of the Ising model. The Swendsen-
Wang algorithm randomly connects nodes in the same state to construct auxiliary clusters: here 4
auxiliary clusters are constructed (pink, blue, yellow, and gray).

Remark a. The algorithm can be generalized to the case where the Potts model admits an exterior

magnetic field, which favors certain states over the others, by adjusting the probability in step 1(b).

The Wolff algorithm only constructs one auxiliary cluster per iteration, even if this means not

every node is assigned to an auxiliary cluster.The motivation for this is to not waste computational

time building small clusters, as we do once there are only a few free nodes left. Another change is

that in the Ising case (q = 2), the Wolff algorithm always flips the state of the cluster, rather than

assigning {−1,+1} with equal probability.

6.6.4 Overview of the tempering algorithm

A tempering algorithm runs multiple chains or replicas over a sequence of temperatures for

a set number of iterations and then exchanges, with a certain probability, the states of two repli-

cas with a neighboring temperature. The probability of exchanging two neighboring states, with
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inverse temperatures βt and βt+1, can be worked out from the detailed balance condition, follow-

ing the argument by Hukushima and Nemeto (1996). For convenience, we introduce the partial

Hamiltonian

H(An,xt) = −
1
2

n∑
i,j=1

An(i, j)1{xt,i = xt,j}

Assume β1 < ... < βt < βt+1 < ... < βT . Consider the joint distribution over T replicas,

{X} = {X1,X2, ...,XT }. The replicas are mutually independent, with joint p.m.f.

P(X1 = x1, ...,XT = xT ) =

T∏
t=1

exp
(
βt
2

∑n
i,j An(i, j)1{xt,i = xt,j}

)
Z(βt, An)

=

T∏
t=1

exp (−βtH(An,xt))

Z(βt, An)
.

We now introduce the transition kernel, Γ(Xt, βt | Xt+1, βt+1), which is the probability of exchang-

ing the tth and (t + 1)th replicas. The detailed balance equation is satisfied, if

P(X1 = x1, ...,Xt = xt,Xt+1 = xt+1, ...,XT = xT )Γ(Xt, βt | Xt+1, βt+1)

= P(X1 = x1, ...,Xt = xt+1,Xt+1 = xt, ...,XT = xT )Γ(Xt+1, βt | Xt, βt+1).

Thus

Γ(Xt, βt | Xt+1, βt+1)

Γ(Xt+1, βt | Xt, βt+1)
=

exp (−βtH(An,xt+1) − βt+1H(An,xt))

exp (−βtH(An,xt) − βt+1H(An,xt+1))

= exp ((βt+1 − βt)(H(An,xt+1) − H(An,xt)) .

From this we deduce a Metropolis update with acceptance probability

Γ(Xt, βt | Xt+1, βt+1)

=min (1,exp [(βt+1 − βt)(H(An,xt+1) − H(An,xt)])

=min ©­«1,exp

1
2
(βt+1 − βt)

©­«−
n∑

i,j=1
An(i, j)1{xt+1,i = xt+1,j} +

n∑
i,j=1

An(i, j)1{xt,i = xt,j}
ª®¬
ª®¬ . (6.27)

Algorithm 6.2 provides the pseudo-code for a practical implementation.
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Notation for the algorithm

• β = (β1, β2, ..., βT ): an array containing the inverse temperature for each replica, where T is

the number of replicas.

• x(i)t : the ith sample for tth replica.

• nex: the number of exchange steps.

• nmc: the number of sampling iterations between exchange steps. Hence the total number of

generated samples is nex × nmc.

• γ: the sampler used between exchanges.

Algorithm 6.2: Tempering

1 input:
(
x(0)1 ,x(0)2 , ...,x(0)T

)
, β, nex, nmc, γ

2 for i ∈ {1, · · · ,nex} do
3 for t ∈ {1, · · · ,T} do
4 Draw x[(i−1)nmc+1]:[inmc]

t using γ.
5 end
6 for t ∈ {1, ...,T − 1} do
7 H(xt) ← −0.5

∑q
`=1

(
y(inmc)
`,t

)′
An

(
y(inmc)
`,t

)
8 H(xt+1) ← −0.5

∑q
`=1

(
y(inmc)
`,t+1

)′
An

(
y(inmc)
`,t+1

)
9 ∆← (βt+1 − βt) (H(xt+1) − H(xt))

10 Draw u ∼ uniform(0,1).
11 if (u ≤ exp(∆)) then
12 xsaved ← x(inmc)

t+1
13 xinmc

t ← x(inmc)
t+1

14 xinmc
t+1 ← xsaved

15 end
16 end
17 end
18 return: x(1)1 , ...,x(nexnmc)

1 , ...,x(1)T , ...,x(nexnmc)

T
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Remark b. The for loop at line 3 of Algorithm 6.2 can be parallelized, since between exchanges,

samples for the replicas are generated independently.

Remark c. We can rewrite line 5 to avoid redundant computations ofH(xt), and insure that only

one Hamiltonian is evaluated per iteration of the for loop at line 4. This requires some careful

book-keeping, which we omitted to make the algorithm more readable. The computational gain

from this step is marginal.

Remark d. One can in theory use a different sampler for different replicas, though preliminary

tests suggest there are no benefits to doing this.

In our numerical experiment on Spin Glass models (Section 6.3.3), we use nex = 40 and nmc =

1000. Our experiment does not parallelize replicas.
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Appendix A: Efficient Automatic Differentiation of implicit functions

CHARLES C. MARGOSSIAN1 AND MICHAEL BETANCOURT2

Derivative-based algorithms are ubiquitous in statistics, machine learning, and applied mathe-

matics. Automatic differentiation offers an algorithmic way to efficiently evaluate these derivatives

from computer programs that execute relevant functions. Implementing automatic differentiation

for programs that incorporate implicit functions, such as the solution to an algebraic or differential

equation, however, requires particular care. Contemporary applications typically appeal to either

the application of the implicit function theorem or, in certain circumstances, specialized adjoint

methods. In this paper we show that both of these approaches can be generalized to any implicit

function, although the generalized adjoint method is typically more effective for automatic differ-

entiation. To showcase the relative advantages and limitations of the two methods we demonstrate

their application on a suite of common implicit functions.

A.1 Introduction

Automatic differentiation is a powerful tool for algorithmically evaluating derivatives of func-

tions implemented as computer programs (Griewank and Walther 2008; Baydin et al. 2018; Mar-

gossian 2019). The method is implemented in an increasing diversity of software packages such as

Stan (Carpenter et al. 2015; Carpenter et al. 2017) and Jax (Bradbury et al. 2018), driving state of

the art computational tools such as the aforementioned Stan and TensorFlow (Dillon et al. 2017).

Each automatic differentiation package provides a library of differentiable expressions and routines

that propagate derivatives through programs comprised of those expressions.

Implicit functions are defined not as explicit expressions but rather by a potentially infinite set

1Columbia University, Department of Statistics
2Symplectomorphic, LLC
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of equality constraints that an output must satisfy for a given input. Common examples include

algebraic equations, optima, and differential equations. Although defined only implicitly by the

constraints they must satisfy, these functions and their derivatives can be evaluated at a given input

which puts them within the scope of automatic differentiation.

Many approaches to evaluating the derivatives of implicit functions have been developed, most

designed for specific classes of implicit functions. Here we focus on two approaches: direct ap-

plication of the implicit function theorem and adjoint methods. The former is commonly applied

to finite-dimensional systems such as algebraic equations and optimization problems for exam-

ple Bell and Burke 2008; Lorraine, Vicol, and Duvenaud 2019; Gaebler 2021 while the latter is

particularly well-suited to infinite-dimensional systems such as ordinary differential equations for

example Pontryagin et al. 1963; Errico 1997, algebraic differential equations (Cao et al. 2002),

and stochastic differential equations (Li et al. 2020). Adjoint methods have also been derived

for some finite-dimensional systems such as difference equations (Betancourt, Margossian, and

Leos-Barajas 2020). When they can be derived the performance of adjoint methods often scales

better than the performance of implicit function theorem methods; the details of those derivations,

however, can change drastically from one system to another.

In this paper we derive implicit function theorem and adjoint methods that implement automatic

differentiation for any implicit function regardless of its dimensionality. We begin by reviewing

derivatives of real-valued functions – drawing a careful distinction between total, partial, and di-

rectional derivatives – and then introduce the basics of automatic differentiation. Next we derive

implicit function theorem and adjoint methods for any finite-dimensional implicit function and

demonstrate their application to the reverse mode automatic differentiation of general algebraic

equations, the special case of difference equations, and optimization problems. Finally we gener-

alize these methods to infinite-dimensional implicit functions with demonstrations on ordinary and

algebraic differential equations. In each example we examine the particular challenges that arise

with each method.
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A.2 Automatic Differentiation

Before discussing the automatic differentiation of implicit functions, in this section we will

review the basics of differentiating real-valued functions and then how derivatives of computer

programs can be implemented algorithmically as automatic differentiation.

A.2.1 A Little Derivative

Differentiation is a pervasive topic, but terminology and notation can vary strongly from field

to field. In this section we review the mathematics of derivatives on real spaces and introduce

all of the terminology and notation that we will use throughout the paper. We first discuss the

parameterization of real spaces and the vector space interpretation that emerges before introducing

formal definitions for total and directional derivatives and their properties.

Locations and Directions.

An I-dimensional real space RI models a rigid and smooth continuum of points. Here we will

consider a subset of the real numbers X ⊆ RI which may or may not be compact.

A parameterization of X decomposes the I-dimensional space into I copies of the one-dimensional

real line,

X ≈ R1 × . . . × Ri × . . . × RI,

which we refer to as a coordinate system. Within a parameterization each point x ∈ X can be

identified by I real numbers denoted parameters or coordinates,

x = (x1, . . . , xi, . . . , xI).

Every real space X admits an infinite number of parameterizations (Figure A.1). A one-to-one

map from X into itself can be interpreted as a map from one parameterization to another and

consequently is often denoted a reparameterization or change of coordinate system.
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x1
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Figure A.1: Every real space X admits an infinite number of parameterizations, or coordinate
systems, each of which are capable of uniquely identifying every point with an ordered tuple of
real numbers.

The choice of any given parameterization endows X with a rich geometry. In particular we can

use coordinates to define how to scale any point x ∈ X by a real number α ∈ R,

α · x = α · (x1, . . . , xi, . . . , xI)

= (α · x1, . . . , α · xi, . . . , α · xI)

= x′ ∈ X,

as well as add two points x, x′ ∈ X together,

x + x′ = (x1, . . . , xi, . . . , xI) + (x′1, . . . , x
′
i , . . . , x

′
I)

= (x1 + x′1, . . . , xi + x′i , . . . , xI + x′I)

= x′′ ∈ X .

These properties make the parameterization of X a vector space over the real numbers; each point

x ∈ X identifies a unique vector x and the coordinates define a distinguished vector space basis. If
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we further use the coordinates to define an inner product,

〈x,x′〉 ≡
I∑

i=1
(xi − x′i )

2

then this vector space becomes a Euclidean vector space, E(X).

This Euclidean vector space structure defines a notion of direction and orientation in X . For ex-

ample any point x ∈ X can be interpreted as a vector x stretching from the origin at (0, . . . ,0, . . . ,0) ≡

O to x. Similarly any two points x, x′ ∈ X are connected by the vector

∆x = x′ − x

= (x′1 − x1, . . . , x′i − xi, . . . , x′I − xI).

Equivalently we can think of vectors as a way to translate from one point to another (Figure A.2).

For example x shifts the origin to x,

x = (x1, . . . , xi, . . . , xI)

= (0 + x1, . . . ,0 + xi, . . . ,0 + xI)

= (0, . . . ,0, . . . ,0) + (x1, . . . , xi, . . . , xI)

= O + x,

while ∆x shifts from x to x′,

x′ = x + (x′ − x) = x + (x′ − x) = x + ∆x.

Consequently once we fix a parameterization each set of coordinates (x1, . . . , xi, . . . , xI) can be

interpreted as either a location x ∈ X or a direction x ∈ E(X).
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O

Figure A.2: Given a parameterization of the real space X vectors quantify the direction and
distance between points, such as x between point x and the origin O or x′ − x between x and x′.
By following a vector we can also translate from the initial point to the final point.

Transforming Locations and Directions.

Given two real spaces X ⊆ RI and Y ⊆ RJ a real-valued function f : X → Y maps points

in X to points in Y . Once a parameterization has been fixed for both spaces such a mapping also

induces a map from vectors in E(X) to vectors in E(Y ), F : E(X) → E(Y ).

Induced maps that preserve the additive and multiplicative structure of the Euclidean vector

space,

F(α · x + β · x′) = α · F(x) + β · F(x′),

are said to be linear. Linear maps can be represented by a matrix of real numbers that maps the

components of the input vector to the components of the output vector,

y j =

I∑
i=1

Fji xi,

or in standard linear algebra notation,

y = F(x) = F · x.

We will denote the space of linear maps between E(X) and E(Y ) as L(X,Y ).
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The Total Derivative.

The total derivative of a function f : X → Y quantifies the behavior of f in the local neighbor-

hood of an input point x ∈ X . This local behavior provides a way of mapping vectors that represent

infinitesimal translations from x to vectors that represent infinitesimal translations from f (x).

More formally the total derivative assigns to each point x ∈ X a linear transformation between

E(X) and E(Y ),

d
dx

: X → L(X,Y )

x 7→
d f
dx
(x) ≡ J(x),

that quantifies the first-order variation of f in the neighborhood of each input x. We can then say

that the total derivative of f at x is the linear transformation J(x) : E(X) → E(Y ).

In components the total derivative at a point x ∈ X is specified by a matrix of partial derivative

functions evaluated at x,

Jji(x) =
∂ f j

∂xi
(x),

denoted the Jacobian. The action of the total derivative at x on a vector v ∈ E(X) is then given by

matrix multiplication,

J(x)(v) = J(x) · v =
I∑

i=1
Jji(x) vi .

Directional Derivatives.

The total derivative of a function f at a point x applied to a vector v ∈ E(X), or more compactly

J(x)(v), quantifies how much the output of f varies as x is translated infinitesimally in the direction

of v. Consequently J(x)(v) = J(x) · v is called the forward directional derivative.

The forward directional derivative is often used to construct the linear function between X and

Y that best approximates f at x. The best approximation evaluated at x′ is given by translating
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X Yf : X → Y

J f · (x′ − x)

f (x)

f̃ (x′)
x′ − x

x

x′

Figure A.3: The forward directional derivative of the function f at x ∈ X , J f , propagates in-
finitesimal perturbations to the input, x′−x, to infinitesimal perturbations of the output, J f · (x′−x).
Translating the function output f (x) by J f · (x′ − x) generates the best linear approximation to f at
x, f̃ .

f (x) along J(x)(x′ − x) (Figure A.3)

f̃ (x′) = f (x) + J(x)(x′ − x)

= f (x) + J(x) · (x′ − x),

or in components,

f̃ j(x′1, . . . , x
′
I) = f j(x1, . . . , xI) +

I∑
i=1

∂ f j

∂xi
(x1, . . . , xI) · (x′i − xi).

The total derivative also defines an adjoint transformation that maps vectors in E(Y ) to vectors

in E(X), J†(x) : E(Y ) → E(X). The matrix components of this adjoint transformation are given

by the transpose of the Jacobian matrix,

J†ji(x) = Ji j(x).

The application of this adjoint transformation to a vector α ∈ E(Y ),

β = J†(x)(α) = JT · α,

quantifies how the inputs need to vary around x in order to achieve the given output variation α.

188



We will refer to this action as a reverse directional derivative.

The Chain Rule.

The chain rule provides an explicit construction for the total derivative of a composite function

constructed from many component functions. Consider for example a sequence of functions fn :

Xn → Xn+1 and the composite function

f = fN ◦ . . . ◦ fn ◦ . . . ◦ f1 : X1 → XN+1.

The total derivative of f at any point x1 ∈ X1 is given by composing the total derivatives of

each component function together in the same order,

J f = J fN (xN ) ◦ . . . ◦ J fn(xn) ◦ . . . ◦ J f1(x1),

where xn = fn−1(xn−1). Likewise the components of the composite Jacobian matrix are given by a

sequence of matrix products,

J f = J fN (xN ) · . . . · J fn(xn) · . . . · J f1(x1).

Unfortunately these intermediate matrix products are expensive to evaluate, especially when the

intermediate spaces Xn are high-dimensional. Constructing the full composite Jacobian matrix is

usually computationally burdensome.

On the other hand this composite structure is well-suited to the evaluation of directional deriva-

tives. For example the forward directional derivative of a composite function is given by

J f (v) =
(
J fN (xN ) ◦ . . . ◦ J fn(xn) ◦ . . . ◦ J f1(x1)

)
(v),

or

J f · v =
(
J fN (xN ) · . . . · J fn(xn) · . . . · J f1(x1)

)
· v.
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Because of the associativity of matrix multiplication we can apply each component derivative to v

in sequence and avoid the intermediate compositions entirely,

J f (v) = J fN (xN )(· · · J fn(xn)(· · · (J f1(x1)(v)) · · · ) · · · ),

or

J f · v = J fN (xN ) · (· · · J fn(xn) · (· · · J f1(x1) · v) · · · ) · · · ).

In other words we can evaluate the total forward directional derivative iteratively,

v1 = J f1(x1)(v)

v2 = J f2(x2)(v1)

. . .

vn = J fn(xn)(vn−1)

. . .

vN−1 = J fN−1(xN−1)(vN−2)

J f (x)(v) = vN = J fN (xN )(vN−1),

or in components,

v1 = J f1(x1) · v

v2 = J f2(x2) · v1

. . .

vn = J fn(xn) · vn−1

. . .

vN−1 = J fN−1(xN−1) · vN−2

J f (x) · v = vN = J fN (xN ) · vN−1.
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The evaluation of each intermediate directional derivative requires only a matrix-vector product

which is substantially less expensive to implement than the matrix-matrix products needed to eval-

uate the composite Jacobian.

The reverse directional derivative can be evaluated sequentially as well,

αN = J†fN (xN )(α)

αN−1 = J†fN−1
(xN−1)(αN )

. . .

αN−n = J†fN−n(xN−n)(αN−n+1)

. . .

α2 = J†f2(x2)(α3)

J†f (x)(α) = α1 = J†f1(x1)(α2),

or in components,

αN = JT
fN (xN ) · α

αN−1 = JT
fN−1
(xN−1) · αN

. . .

αN−n = JT
fN−n(xN−n) · αN−n+1

. . .

α2 = JT
f2(x2) · α3

JT
f (x) · α = α1 = JT

f1(x1) · α2.

A.2.2 Express Yourself

Before we can consider how to implement derivatives of real-valued functions in practice we

first have to consider how to implement the real-valued functions themselves. Functions f : X → Y
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Pseudo-Code

real f(vector[3] x1) {

real z1 = x1[1] + x1[2];

real z2 = x1[2] * x1[3];

return z1 / z2;

}

Expression Graph

x1,1 x1,2 x1,3

+ ∗

/

Figure A.4: This pseudo-code implements a function f : R3 → R that maps every input x1 =
(x1,1, x1,2, x1,3) to a real-valued output through three intermediate expressions. The dependencies
between these expressions and the input variables forms an expression graph.

are often implemented as computer programs which take in any input value x ∈ X and return the

corresponding output value f (x) ∈ Y . These computer programs are themselves implemented as

a sequence of expressions, each of which transforms some descendent of the initial value towards

the final output value.

If these expressions defined full component functions then we could use the chain rule to au-

tomatically propagate directional derivatives through the program as we discussed in the previous

section. Well-defined component functions, however, would depend on only the output of the

previous component function, while expressions can depend on the output of multiple previous

expressions. Because of this expressions do not immediately define valid component functions on

their own, and the chain rule does not immediately apply.

That said we can manipulate each expression into a well-defined component function with a

little bit of work. First we’ll need to take advantage of the fact that the expressions that comprise

a complete program can be represented as a directed acyclic graph, also known as an expression

graph (Figure A.4). In each expression graph the root nodes designate the input variables, inter-

nal and leaf nodes designate the expressions, and edges designate the dependencies between the

expressions.

A topological sort of an expression graph is any ordering of the nodes such that each expression
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Expression Graph

x1,1 x1,2 x1,3

+ ∗

/

Topological Sort

x1,1 x1,2 x1,3

+

∗

/

Stack/Tape

x1,1

x1,2

x1,3

∗

+

/

Figure A.5: A topological sort of an expression graph is an ordering of the expressions, often
called a stack or a tape, that guarantees that when progressing across the stack in order each
expression will not be evaluated until all of the expressions on which it depends have already been
evaluated.

follows all expressions on which it depends (Figure A.5). Such a sorting ensures that if we process

the sorted expressions in order then we will evaluate an expression only once all of the expressions

on which it depends have already been evaluated.

Any topological sort provides an explicit sequence of expressions, but each expression can still

depend on the output of any expression that precedes it in the stack. We can use the ordering to

limit this dependence to only the previous output, however, if we can buffer each expression with

any of the previous outputs that are used by future expressions. For example this buffering can

be implemented by introducing identify expressions that propagate any necessary values forward

(Figure A.6). Together each initial expression and the added identify expressions define a layer of

expressions that depend on only the expressions in the previous layer, so that these layers define a

sequence of valid component functions (Figure A.7).

Once we’ve derived these component functions we can finally apply the chain rule. In partic-

ular we can evaluate forward directional derivatives by propagating an initial vector through the

constructed sequence of component functions. At the same time we can evaluate a reverse direc-

tional derivative by first evaluating all of the component functions in a forward sweep through the
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Topological Sort

x1,1 x1,2 x1,3

+

∗

/

Expression Layers

x1,1 x1,2 x1,3

I I ∗

+ I

/

Figure A.6: In order to turn each topologically-sorted expression into a valid component function
they must be complemented with identity maps that carry forward intermediate values needed by
future expressions. The resulting layers of expressions depend on only expressions in the previous
layer.

Reconstructed Component Functions

f1 : X1 ⊆ R
3 → X2 ⊆ R

3

(x1,1, x1,2, x1,3) 7→ (x2,1 = x1,1, x2,2 = x1,2, x2,3 = x1,2 · x1,3)

f2 : X2 ⊆ R
3 → X3 ⊆ R

2

(x2,1, x2,2, x2,3) 7→ (x3,1 = x2,1 + x2,2, x3,2 = x2,3)

f3 : X3 ⊆ R
2 → X4 ⊆ R

1

(x3,1, x3,2) 7→ (x4,1 = x3,1/x3,2)

x1,1 x1,2 x1,3

I I ∗

+ I

/

Figure A.7: Complementing each topologically-sorted expression with the appropriate identity
maps defines valid component functions. When composed together these component functions
yield the function implemented by the computer program, here f = f3 ◦ f2 ◦ f1, and allow for the
application of the chain rule to differentiate through the program.
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sequence before executing a reverse sweep that propagates a vector in the output space to the input

space.

Something interesting happens, however, when we evaluate the total derivative of one of these

reconstructed component functions. Let’s denote the action of the component function as fn :

(x, x′) 7→ (g(x), I(x′)), where g is the action implemented by the initial expression and I is the

identify map that propagates any auxiliary outputs. We can also decompose the input vector v into

components that map onto g and I, respectively,

v = (vg,vI)
T .

In this notation the forward directional derivative becomes

J fn(v) = J fn((vg,vI)
T )

= J fn · (vg,vI)
T

=

©­­­­­«
∂g
∂x

∂g
∂x′

∂I
∂x

∂I
∂x′

ª®®®®®¬
·

©­­­­­«
vg

vI

ª®®®®®¬
=

©­­­­­«
∂g
∂x 0

0 0

ª®®®®®¬
·

©­­­­­«
vg

vI

ª®®®®®¬
=

©­­­­­«
∂g
∂x · vg

0

ª®®®®®¬
The only non-vanishing contribution to the directional derivative comes from the initial ex-

pression; the vector corresponding to the buffered outputs, vI , completely decouples from any

derivatives that follow. Consequently the only aspect of the reconstructed component function that
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influences propagation of the forward directional derivative is the forward directional derivative of

the expression itself.

In other words we can evaluate the forward directional derivative of a function implemented

by a computer program by propagating only the forward directional derivatives of the individual

expressions; at no point do we actually have to construct explicit component functions! The action

of the adjoint derivative behaves similarly, allowing us to evaluate the reverse directional derivative

using only the reverse directional derivatives local to each expression. When considering higher-

order derivatives, however, the equivalence between propagating vectors across expressions and

full component functions is not always preserved and explicit component functions may be needed.

For more see Betancourt 2018b.

A.2.3 Automatic Differentiation

Automatic differentiation exploits the equivalence between propagating vectors across expres-

sions and full component functions to algorithmically evaluate forward and reverse directional

derivatives.

Forward mode automatic differentiation implements forward directional derivatives, passing

intermediate values and intermediate forward directional derivatives between expressions as the

program is evaluated. These intermediate forward directional derivatives are denoted tangents or

sensitivities.

Any implementation of a function g that supports forward mode automatic differentiation must

provide not only a map from input values to output values but also a map from input tangents to

output tangents,

v′ = Jg · v.

Similarly reverse mode automatic differentiation implements reverse directional derivatives.

Here the program must be evaluated first before intermediate reverse directional derivatives are

propagated between expressions in the reverse order that the expressions are evaluated. These

intermediate reverse directional derivatives are denoted cotangents or adjoints.
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Any implementation of a function g that supports reverse mode automatic differentiation must

provide not only a map from input values to output values but also a map from output cotangents

to input cotangents,

α′ = JT
g · α.

A.3 Automatic Differentiation of Finite-Dimensional Implicit Functions

A finite collection of constraint functions that an output has to satisfy for a given input implic-

itly defines a map from inputs to outputs, or an implicit function. In this section we discuss how

implicit functions are formally defined, how to differentiate these implicitly defined functions, and

then finally demonstrate their application on several instructive examples.

A.3.1 The Finite-Dimensional Implicit Function Theorem

Consider a finite-dimensional real-valued space of known inputs, X , a finite-dimensional real-

valued space of unknown outputs, Y , a finite-dimensional real-valued space of constraint values,

Z , and the constraint function

c : X × Y → Z

(x, y) 7→ c(x, y).

The implicit function theorem defines the conditions under which the constraint function implicitly

defines a map from f : X → Y which satisfies c(x, f (x)) = 0 for all inputs in a local neighborhood

x ∈ U ⊂ X .

More formally consider the neighborhoods 0 ∈ W ⊂ Z and V ⊂ Y such that the kernel of the

constraint function falls into product of U and V ,

c−1(0) = U × V,
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and assume that a function f : U → V that satisfies c(x, f (x)) = 0 exists. If the constraint function

c is differentiable across U × V then the total derivative of c evaluated at (x, f (x)) is given by

0 =
d

dx
c(x, f (x))

=
∂c
∂x
(x, f (x)) +

∂c
∂y
(x, f (x)) ◦

d f
dx
(x).

When the dimension of Z equals the dimension of Y then the partial derivative ∂c/∂y (x, y)

might define a bijection from V to W . If it does then we can solve for the total derivative of the

assumed function,
d f
dx
(x)︸︷︷︸

U→V

= −

(
∂c
∂y
(x, f (x))

)−1

︸              ︷︷              ︸
W→V

◦
∂c
∂x
(x, f (x))︸        ︷︷        ︸
U→W

.

When ∂c/∂y (x, y) is bijective this derivative is well-defined, and the existence and uniqueness of

ordinary differential equation solutions guarantees that an implicit function that satisfies c(x, f (x)) =

0 is well-defined in the neighborhood around x. In other words the system of constraints defines

an implicit function if and only if the partial derivative ∂c/∂y (x, y) is invertible

The implicit function theorem determines when an implicit function is well-defined, but not

how to evaluate it. In practice we typically have to rely on numerical methods that heuristically

search the output space for a value y that satisfies c(x, y) = 0 for the given input x.

A.3.2 Evaluating Directional Derivatives of Finite-Dimensional Implicit Functions

To incorporate implicit functions into an automatic differentiation library we need to be able to

evaluate not only the output consistent with a given input but also the directional derivatives. Here

we consider three general approaches: a trace method that works with a given numerical solver, a

method that utilizes intermediate results of the implicit function theorem, and an adjoint method

that evaluates the directional derivative directly.

In all three approaches we will consider not the implicit function alone but rather its composi-

tion with a summary function that maps the outputs into some real space, g : Y → RK . Often g
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will be the identify map, but the flexibility offered by this summary function will facilitate some

of the examples that we consider below.

When X = RI and Y = Z = RJ the composition of the summary function with the implicit

function defines the real-valued function

h = g ◦ f : RI → RJ → RK

and our goal will be to evaluate either the forward directional derivative Jg◦ f (x)(v) or the reverse

directional derivative J†
g◦ f (x)(α).

Trace Method.

Each step that an iterative numerical solver takes while searching for a consistent output can

be interpreted as a map from the output space to itself given the fixed input x,

f̃n : X × Y → Y

(x, yn−1) 7→ yn.

The trace of the solver’s evaluation then defines a composite function,

f̃ (x, y0) =
(
f̃N (x) ◦ f̃N−1(x) ◦ . . . ◦ f1(x)

)
(y0)

that maps the input and an initial guess to an approximate solution,

f̃ : X × Y → Y

(x, y0) 7→ ỹ

satisfying c(x, ỹ) ≈ 0.

If each of these intermediate steps are differentiable and supported by an automatic differenti-
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ation library then we can evaluate the directional derivatives of f̃ using automatic differentiation

and use them to approximate the directional derivatives of the exact implicit function f . While

straightforward to implement this approach can suffer from poor performance in practice, espe-

cially as the number of solver iterations grows and propagating derivatives through the composite

function becomes slow and memory intensive. See for example (Bell and Burke 2008) for further

discussion of this trace method applied to optimization problems and (Margossian 2019) for one

on algebraic equations.

Finite-Dimensional Implicit Function Theorem.

Conveniently the derivative of the implicit function f is explicitly constructed in the derivation

of the implicit function theorem,

d f
dx
(x) = −

(
∂c
∂y
(x, f (x))

)−1
◦
∂c
∂x
(x, f (x)).

If we can evaluate these derivatives of the constraint function then we can immediately evaluate the

derivative for f once we have numerically solved for the output of the implicit function y = f (x),

d f
dx
(x) = −

(
∂c
∂y
(x, y)

)−1
◦
∂c
∂x
(x, y).

The Jacobian of the composite function g ◦ f is then given by

Jg◦ f (x) =
∂(g ◦ f )
∂x

(x)

=
dg
dy
( f (x)) ◦

d f
dx
(x)

= −
dg
dy
( f (x)) ◦

(
∂c
∂y
(x, f (x))

)−1
◦
∂c
∂xi
(x, f (x)).
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In components this becomes

(Jg◦ f )ik(x) =
∂hk

∂xi
(x)

=

J∑
j=1

dgk

dy j
( f (x)) ·

d f j

dxi
(x)

= −

J∑
j=1

J∑
j ′=1

dgk

dy j
( f (x)) ◦

(
∂c j ′

∂y j
(x, f (x))

)−1
◦
∂c j ′

∂xi
(x, f (x)),

or in more compact matrix notation,

Jg◦ f = −Jg · C−1
y · Cx,

where

(Cy)i j =
∂ci

∂y j
(x, f (x))

(Cx)i j =
∂ci

∂x j
(x, f (x))

(Jg)i j =
∂g j

∂yi
( f (x)).

In order to incorporate this composite function into forward mode automatic differentiation we

need to evaluate the action of the Jacobian contracted against a tangent vector,

(
Jg◦ f (x) · v

)
j =

I∑
i=1
(Jg◦ f )i j(x) · vi

= −

I∑
i=1

dg j

dy
( f (x)) ◦

(
∂c
∂y
( f (x))

)−1
◦
∂c
∂xi
(x) · vi,

or equivalently

Jg◦ f (x) · v = −Jg · C−1
y · Cx · v.

Similarly to incorporate this composite function into reverse mode automatic differentiation we
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need to evaluate the action of the Jacobian contracted against a cotangent vector,

(JT
g◦ f (x) · α)i =

J∑
j=1
(Jg◦ f )i j(x) · α j

= −

J∑
j=1

dg j

dy
( f (x)) ◦

(
∂c
∂y
( f (x))

)−1
◦
∂c
∂x
( f (x)) · α j,

or

JT
g◦ f (x) · α = −CT

x ·

(
C−1

y

)T
· JT

g · α

= −CT
x ·

(
CT

y

)−1
· JT

g · α.

With so many terms there are multiple ways to evaluate these directional derivatives. The

forward method, for example, explicitly constructs Jg◦ f (x) = −Jg · C−1
y · Cx before evaluating

the contractions Jg◦ f (x) · v or JT
g◦ f (x) · α. With careful use of automatic differentiation, however,

we can evaluate the final directional derivatives more efficiently. In particular we don’t need to

explicitly construct Jg and Cx at all.

For example when evaluating Jg◦ f (x) · v we can avoid Cx by using one sweep of forward

mode automatic differentiation to evaluate u = Cx · v directly. Because of the inversion we have to

construct the entirety of Cy, for example with J sweeps of forward mode or reverse mode automatic

differentiation, but we can avoid constructing (Cy)
−1 by solving for only the linear system

Cy · t = u.

Finally we can avoid constructing Jg with one sweep of forward mode automatic differentiation to

evaluate Jg · t. These steps are outlined in Algorithm A.1.

Similar optimizations are also possible when evaluating the reverse directional derivative JT
g◦ f (x)·

α. We first evaluate β = JT
g ·α using one sweep of reverse mode automatic differentiation and then
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Algorithm A.1: Forward mode automatic differentiation of finite-dimensional implicit
function.

1 input: constraint function, c; summary function, g; tangent, v. . Note: we assume we

have a differentiable program for all the input functions.

2 u← Cx · v . one forward mode sweep

3 Cy ← ∂c/∂y . J forward or reverse mode sweep

4 t← C−1
y · u . linear solve

5 Jg◦ f · v← −Jg · t . one forward sweep

6 return: Jg◦ f · v

construct Cy as above. This allows us to solve the linear system

CT
y · γ = β,

and then evaluate CT
x · β with one more sweep of reverse mode automatic differentiation through

the constraint function. These steps are outlined in Algorithm A.2.

Algorithm A.2: Reverse mode automatic differentiation of finite-dimensional implicit
function.

1 input: constraint function, c; summary function, g; cotangent, α. . Note: we assume we

have a differentiable program for all the input functions.

2 β ← JT
g · α . one reverse mode sweep

3 Cy ← ∂c/∂y . J forward or reverse mode sweep

4 γ ←
(
CT

y

)−1
β . linear solve

5 JT
g◦ f · α ← −CT

x · γ . one reverse mode sweep

6 return: JT
g◦ f · α

Often the form of a particular constraint function results in sparsity structure in Cx and Cy

that can be exploited to reduce the cost of the irreducible linear algebraic operations. Identifying

this structure and implementing faster operations, however, requires substantial experience with

numerical linear algebra.
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The Finite-Dimensional Adjoint Method.

The adjoint method provides a way of directly implementing the contractions that give forward

and reverse directional derivatives without explicitly constructing the Jacobian d f /dx(x). Adjoint

methods have historically been constructed for specific implicit functions but here we present a

general construction for any finite-dimensional system of constraints.

We begin by constructing a binary Lagrangian function,

L : X × Y → R,

whose derivative is equal to the desired contraction when c(x, y) = 0. More formally we compose

L with the implicit function defined by the constraints to give the unary function

L(x) = L(x, f (x)) : x 7→ R,

and then require that
dL
dxi
(x) = (Jg◦ f · v)i(x).

for forward mode automatic differentiation or

dL
dxi
(x) = (JT

g◦ f · α)i(x)

for reverse mode automatic differentiation. To simplify the presentation from here on we will focus

on only this latter application to reverse mode automatic differentiation.

Next we introduce any mapping Λ : Z → R that preserves the kernel of the constraint function,

Λ ◦ c(x, y) = 0 whenever c(x, y) = 0. This allows us to define a second function

Q = Λ ◦ c : X × Y → R

with Q(x, f (x)) = 0 for all x ∈ X .
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These two functions together then define an augmented Lagrangian function,

J = L + Q : X × Y → R.

Substituting y = f (x) gives a unary function,

J(x) = J(x, f (x))

= L(x, f (x)) + Q(x, f (x)).

The second term, however, vanishes by construction so that J(x) reduces to L(x) and

dJ
dxi
(x) =

dL
dxi
(x) = (JT

g◦ f · α)i(x).

While the contribution from C(x, f (x)) vanishes, its inclusion into the augmented Lagrangian

introduces another way to evaluate the desired directional derivative. The total derivative of the

unary augmented Lagrangian is

dJ
dxi
(x) =

dJ
dxi
(x, f (x))

=
dL
dxi
(x, f (x)) +

dQ
dxi
(x, f (x))

=
∂L

∂xi
(x, f (x)) +

(
∂L

∂y
(x, f (x)) ◦

∂ f
∂xi

)
(x)

+
∂Q

∂xi
(x, f (x)) +

(
∂Q

∂y
(x, f (x)) ◦

∂ f
∂xi

)
(x)

=
∂L

∂xi
(x, f (x)) +

∂Q

∂xi
(x, f (x))

+

((
∂L

∂y
(x, f (x)) +

∂Q

∂y
(x, f (x))

)
◦
∂ f
∂xi

)
(x).

Once we’ve identified the solution y = f (x) the first two terms are ordinary partial derivatives that

are straightforward to evaluate. The second two terms, however, are tainted by the total derivative

of the implicit function, d f /dx, which is expensive to evaluate as we saw in the previous section.
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At this point, however, we can exploit the freedom in the choice of kernel-preserving function

Λ and hence J itself. If we can engineer a Λ such that

∂L

∂y
(x, f (x)) +

∂Q

∂y
(x, f (x)) = 0

then the contribution from the last two terms, and the explicit dependence on the derivative of the

implicit function vanishes entirely!

The adjoint method attempts to solve this adjoint system

∂L

∂y
(x, f (x)) +

∂Λ

∂c
(c(x, f (x))) ◦

∂c
∂y
(x, f (x)) = 0

for a suitable Λ and then evaluate the desired contraction from the remaining two terms,

dJ
dxi
(x) =

∂L

∂xi
(x, f (x)) +

∂Λ

∂c
(c(x, f (x))) ◦

∂c
∂xi
(x, f (x)).

If a suitable Λ exists, and we can find it, then this two-stage method allows us to evaluate the

directional derivative directly without constructing the derivatives of the implicit function.

A.3.3 Demonstrations

To compare and contrast the two presented methods for evaluating directional derivatives of

an implicit function we examine their application on three common implicit systems: algebraic

equations, difference equations, and optimization problems.

Algebraic systems.

When X = RI and Y = RJ a system of J transverse constraint functions c j(x, y) defines an

algebraic system and a well-defined implicit function. In Section A.3.2 we saw that the finite-
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dimensional implicit function theorem gives the reverse directional derivative

JT (x) · α = −CT
x ·

(
C−1

y

)T
· JT

g · α.

where

(Jg)i j =
∂g j

∂yi
( f (x))

(Cy)i j =
∂ci

∂y j
(x, f (x))

(Cx)i j =
∂ci

∂x j
(x, f (x)).

Here we will take g to be the identify function so that Jg reduces to the identify matrix and the

reverse directional derivative simplifies to

JT (x) · α = −CT
x ·

(
C−1

y

)T
· α.

To apply the adjoint method we need to construct a Lagrangian function that satisfies

dL
dxi
(x, f (x)) = (JT · α)i(x).

For example we can take

L = fT (x) · α =
J∑

j=1
f j(x) · α j .

Next we need to augment L with the contribution from the constraints Q. Because inner

products vanish whenever either input is zero we can take

Q = cT (x, y) · λ =
J∑

j=1
c j(x, y) · λ j,

for any real-valued, non-zero constants λ j .
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With these choices of L and Q the adjoint system becomes

0 =
∂L

∂y j
+
∂Q

∂y j

= α j +

J∑
j ′=1

∂c j ′

∂y j
(x, f (x)) · λ j ′,

or, in matrix notation,

0 = α + CT
y · λ.

Because Cy is non-singular we can directly solve this for λ,

λ = −(C−1
y )

T · α.

Substituting this into the remaining terms then gives

(JT · α)i(x) =
dJ
dxi
(x, f (x))

=
∂L

∂xi
(x, f (x)) +

∂Q

∂xi
(x, f (x))

= 0 +
J∑

j ′=1
λ j ′ ·

∂c j ′

∂xi
(x, f (x))

= (CT
x · λ)i

= (−CT
x · (C−1

y )
T · α)i,

or

JT · α = −CT
x · (C−1

y )
T · JT

g · α.

which is exactly the same as the result from the implicit function theorem.

In this general case there isn’t any structure in the constraint functions to exploit and conse-

quently both methods yield equivalent calculations.

208



Difference Equations.

To better contrast the two methods let’s consider a more structured system. A discrete dynam-

ical system over the state space RN defines trajectories

y = (y1, . . . ,yi, . . . ,yI),

where the individual states yi ∈ R
N are implicitly defined by the difference equations

yi+1 − yi = ∆(yi, x, i),

for some initial condition y0 = u(x). To simplify the notation we will write

∆i = ∆(yi, x, i)

from here on.

Organizing these difference equations into constraint equations defines a highly structured al-

gebraic system,

y1 − y0 − ∆0 = c1(x, y) = 0

· · ·

yi − yi−1 − ∆i−1 = ci(x, y) = 0

· · ·

yI − yI−1 − ∆I−1 = cI(x, y) = 0,

which then sets the stage for the implicit function machinery.

Formally this system of constraints defines an entire trajectory; the output space is given by

Y ⊂ RN×I . Often, however, we are interested not in the entire trajectory but only the final state,
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yI ∈ R
N . Conveniently we can readily accommodate this by using the summary function to project

out the final state,

g : Y = RN×I → R

(y1, . . . ,yi, . . . ,yI) 7→ yI .

Having defined an implicit system and summary function we can now apply the implicit func-

tion theorem and adjoint methods to derive the gradients of the implicitly-defined final state. Al-

though these two methods yield equivalent results, the adjoint method more directly incorporates

the natural structure of the problem without any explicit linear algebra.

Differentiation with the Implicit Function Theorem. To apply the implicit function theorem directly

we proceed as in A.3.3 and and compute

JT · α = −CT
x · (C−1

y )
T · JT

g · α.

term by term from the right.

Our chosen summary function yields the Jacobian matrix

Jg =
∂g

∂y
= [0N, · · · ,0N, IN ] ,

where 0N is an N × N matrix of zeros and IN is the N × N identity matrix. The first contraction on

the right then gives

βT = (JT
g · α)

T = [0,0, · · · ,0︸     ︷︷     ︸
(I−1)N

, α1, α2, · · · , αN︸           ︷︷           ︸
N

].
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At this point we construct Cy from the derivatives of the constraint functions,

Cy =



IN 0N · · ·

C1
y IN 0N · · ·

0N C2
y IN 0N · · ·

...
. . .

. . .
. . .

. . .

0N · · · · · · CI−1
y IN


,

where

Ci
y =

∂

∂yi
(yi+1 − yi − ∆i) = −1 −

∂∆i

∂yi
,

and then solve the linear system

CT
y · γ = β.

Because of the structure of the constraints the matrix Cy is triangular and with enough linear

algebra proficiency we would know that we can efficiently solve for γ with backwards elimination.

To clarify the derivation we first split the elements of γ into subvectors of length N ,

γT = [γ1, ...,γI].

The linear system can then be written as



IN C1
y 0N · · ·

0N IN C2
y 0N · · ·

0N 0N IN C3
y 0N

...
. . .

. . .
. . .

. . .

0 · · · · · · 0 IN


·



γ1

γ2

γ3
...

γI


=



0

0

0
...

α


.

Starting from the bottom and going up we can solve this system recursively to obtain the backward
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difference equations

γi −

(
1 +

∂∆i

∂yi

)
γi+1 = 0

with terminal condition

γI = α.

We now evaluate Cx; for i > 1 the derivatives are straightforward,

(Cx)i =
∂ci

∂x
= −

∂∆i−1
∂x

,

but for i = 1 we have to be careful to incorporate the implicit dependence of the initial state,

y0 = u(x), on x,

(Cx)1 =
∂c1
∂x

=
∂

∂x
(y1 − y0 − ∆(y0, x,0))

=
∂

∂x
(y1 − u(x) − ∆(u(x), x,0))

= −
∂u
∂x
−

(
∂∆
∂x
+
∂∆
∂u
·
∂u
∂x

)
= −

(
1 +

∂∆
∂u

)
∂u
∂x
−
∂∆
∂x

.

Finally we multiply Cx and γ to give

(
dyI

dx

)T

· α = −CT
x · γ

=

(
∂u
∂x

)T

·

(
1 +

∂∆0
∂u

)T

· γ1 +

I∑
i=1

(
∂∆i−1
∂x

)T

· γi .

Although the steps are straightforward, implementing them correctly, let alone efficiently, has

required careful organization.

Differentiation with the Adjoint Method. Because this discrete dynamical system is a special case

of an algebraic system we could appeal to the augmented Lagrangian that we constructed in Sec-
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tion A.3.3 and then repeat the same linear algebra needed for the implicit function theorem method.

A more astute choice of Lagrangian, however, allows us to directly exploit the structure of the con-

straints and the summary function.

Given our choice of summary function we need to construct a Lagrangian function which

satisfies
∂L

∂xi
(x,yI) =

(
dyI

dxi

)T

· α.

Because ∆i is a telescoping series,

yI = u(x) +
I∑

i=1
∆i,

a natural choice is

L(x,y) = yT
I · α

= uT (x) · α +
I∑

i=1
∆T

i · α.

For the constraint term C we utilize a similar form as in the general algebraic case,

Q(x, y) =
I∑

i=1
cT

i · λi

=

I∑
i=1
[yi − yi−1 − ∆i−1]

T · λi,

where λi ∈ R
N .

The adjoint system defined by L and Q decouples into the equations

0 =
∂L

∂yi
+
∂Q

∂yi

=

(
∂∆i

∂yi

)T

· α + λi+1 − λi −

(
∂∆i

∂yi

)T

· λi .
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for i ∈ {1, . . . , I − 1} along with the terminal condition for i = I,

0 = λ I .

In other words the adjoint system defines a backward difference equation that we can solve recur-

sively from λI to λI−1 all the way to λ1.

Once we have solved for these adjoint states we can substitute them into the remaining terms

to give the desired directional derivative,

(
dyI

dx

)T

· α =
∂L

∂x
+
∂Q

∂x

=

(
∂u
∂x

)T

·

(
1 +

∂∆0
∂u

)T

· (α − λ0) +

I∑
i=1

(
∂∆i

∂x

)T

· (α − λi).

As expected the adjoint method has provided an alternative path to the same result we obtained

with the implicit function theorem. Indeed matching the two expressions for (dy/dx)T ·α, suggests

taking

γi = α − λi,

in which case the intermediate difference equations that arise in both methods are exactly the same

as well! The advantage of the adjoint method is that we did not have to construct Jg, Cy, or Cx , let

alone manage their sparsity to ensure the most efficient computation.

Note also that this procedure yields the same result for difference equations derived in (Betan-

court 2020) only with fewer steps, and hence fewer opportunities for mistakes.

Optimization.

Another common class of finite-dimensional, implicit functions are defined as solutions to

optimization problems. Given an objective function F : X × Y → R we can define the output of
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the implicit function as the value which maximizes that objective function for a given input,

y = argmax
v

F(x, v).

In a neighborhood U ×V ⊂ X ×Y where F(x,−) is convex for all x ∈ U, this implicit function

is also defined by the differential constraint

c(x, y) =
∂F
∂y
(x, y) = 0,

which allows us to apply our machinery to evaluate the derivatives of this implicit function. The

convexity constraint is key here; without it the constraint function will identify only general ex-

trema which can include not only maxima but also minima and saddle points.

When X ⊂ RI and Y ⊂ RJ the differential constraint function reduces to an algebraic system

and we can directly apply the results of Section A.3.3. In particular without any assumptions on

the objective function there is no difference in the implementation of the implicit function theorem

or adjoint methods.

We start by setting the summary function to the identity so that Jg = I and

β = JT
g · α = α.

Next we compute

(Cy)i j =
∂ci

∂y j
(x, y) =

∂2F
∂yi∂y j

(x, y),

for example analytically or with higher-order automatic differentiation (Griewank and Walther

2008; Betancourt 2018b). Conveniently when the optimization is implemented with a higher-order

numerical method this Hessian matrix will already be available at the final solution. Once Cy has

been constructed we then solve the linear system

∂2F
∂yi∂y j

(x, y) · γ = α.
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Finally we construct

(Cx)i j =
∂ci

∂x j
=

∂2F
∂yi∂x j

,

and then evaluate

JT · α = −CT
x · γ.

This final contraction defines a second-order directional derivative of the objective function. Con-

veniently it can be evaluated with higher-order automatic differentiation without having to explic-

itly construct Cx .

These optimization problems become more sophisticated with the introduction of an additional

equality constraint so that the output of the implicit function is now defined by the condition

y = argmax
s

F(x, s) such that k(x, y) = 0,

for the auxiliary constraint function k : RI × RJ → RK .

In order to define an implicit system that consistently incorporates both of these constraints we

have to augment the output space. We first introduce the Lagrange multipliers µ ∈ M ⊂ RK and

the augmented objective function

Φ : X × Y × M → R

(x, y, µ) 7→ F(x, y) + µ · k(x, y).

A consistent solution to the constrained optimization problem is then given by

(y, µ) = argmax
s,m

Φ(x, s,m).

In other words we can incorporate all of the constraints directly on the augmented output space

ζ = (y, µ) and then project back down to the original output space using the summary function

g : (y, µ) 7→ y.
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Within a sufficiently convex neighborhood we can also define the constrained optimization

problem with a constraint function over this augmented output space,

c(x, ζ) =
∂Φ

∂ζ
(x, ζ) = 0,

which allows us to apply our methods for evaluating directional derivatives.

From the projective summary function we first construct

β = JT
g · α.

Next we differentiate the constraint function on the augmented output space,

(Cζ )i j =
∂2Φ

∂ζi∂ζ j
(x, ζ),

and then solve the linear system
∂2Φ

∂ζi∂ζ j
(x, ζ) · γ = β.

Finally we construct

(Cx)i j =
∂2Φ

∂ζi∂x j
,

and then evaluate

JT · α = −CT
x · γ.

As before this final contraction defines a second-order directional derivative that can be directly

evaluated with higher-order automatic differentiation, although this time on the augmented output

space.

Inequality constraints introduce an additional challenge. While the Karush-Kuhn-Tucker con-

ditions define an appropriate system of constraints (Karush 1939; Kuhn and Tucker 1951), the

dimension of the constraint space varies with the input x as different inequality constraints become

active. Moreover even when the objective function and the additional constraint functions are all
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smooth the implicit function they define might not be differentiable at every x. We leave a detailed

treatment of this problem to future work.

A.4 Automatic Differentiation of Infinite-Dimensional Implicit Functions

With care in how derivatives are defined we can immediately generalize the finite dimensional

methods for evaluating directional derivatives of implicit functions to infinite dimensional systems,

for example systems that implicitly define entire trajectories, fields, or even probability distribu-

tions. In this section we review the basics of differentiable, infinite dimensional spaces and the

generalization of the implicit function theorem before generalizing the directional derivative eval-

uation methods and demonstrating them on two instructive examples.

A.4.1 The Infinite-Dimensional Implicit Function Theorem

The machinery of differential calculus over the real numbers generalizes quite naturally to

a Fréchet calculus over Banach vector spaces. In this section we review the key concepts and

then use them to construct an infinite-dimensional implicit function theorem. For a more in depth

presentation of these topics see for example Kesavan 2020.

Fréchet derivatives.

The Fréchet derivative generalizes the concept of a derivative that we introduced for real spaces

to the more general Banach vector spaces, or more compactly Banach spaces. Banach spaces

include not only finite-dimensional Euclidean vector spaces but also infinite-dimensional function

spaces.

Consider two Banach spaces, X and Y , and a function f : X → Y mapping between them. If f

is Fréchet differentiable then the Fréchet derivative assigns to each input point x ∈ X a bounded,

linear map
δ f
δx

: X → BL(X,Y ),

218



where BL(X,Y ) is the space of bounded, linear functions from X to Y . In other words the Fréchet

derivative of f evaluated at x defines a bounded, linear map from X to Y ,

δ f
δx
(x) : X → Y .

Note that unlike the total derivative we introduced on real spaces the Fréchet derivative is defined

directly on a vector space and so there is no distinction between locations and directions.

If Z is a third Banach space then the composition of f with g : Y → Z defines a map from X

to Z ,

g ◦ f : X → Z .

The Fréchet derivative of this composition,

δ(g ◦ f )
δx

(x) : X → Z,

follows a chain rule,
δ(g ◦ f )
δx

(x) =
δg

δx
( f (x))︸     ︷︷     ︸

Y→Z

◦
δ f
δx
(x)︸︷︷︸

X→Y

.

A binary map h : X × Y → Z also admits a partial Fréchet derivative. For example the partial

Fréchet derivative of h with respect to the first input defines a map

δh
δx

: X × Y → BL(X, Z).

Equivalently the partial Fréchet derivative of h evaluated at (x, y) is a bounded, linear map from X

to Z ,
δh
δx
(x, y) : X → Z .
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Similarly we can define a partial derivative with respect to the second output as

δh
δy

: X × Y → BL(Y, Z)

with
δh
δy
(x, y) : Y → Z .

When a binary map like h is composed with unary maps in each argument then we can use the

chain rule to define a notion of a total Fréchet derivative. Let h : X × Y → Z , f : W → X and

g : W → Y . The component-wise composition h( f ( ),g( )) then defines a unary map

q = h( f ( ),g( )) : W → Z,

with the corresponding Fréchet derivative

δq
δw
(w) : W → Z,

which decomposes into contributions from each argument,

δq
δx
(w) =

δh
δx
( f (w),g(w)) ◦

δ f
δw
(w) +

δh
δy
( f (w),g(w)) ◦

δg

δw
(w).

The Implicit Function Theorem.

The finite dimensional implicit function theorem immediately generalizes to Banach spaces

with the use of Fréchet derivatives. Consider a Banach space of known inputs, X , a Banach space

of unknown outputs, Y , a Banach space of constraint values, Z , and the constraint function

c : X × Y → Z

(x, y) 7→ c(x, y).
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Once again, we examine a particular input, x ∈ X , and the neighborhoods x ∈ U ⊂ X , V ⊂ Y and

W ⊂ Z .

If c is Fréchet differentiable across U × V then it defines two partial Fréchet derivatives

δc
δx
(x, y) : U → W

and
δc
δy
(x, y) : V → W .

When δc/δy(y) defines a bijection from V to W we can also define a corresponding inverse

operator, (
δc
δy
(x, y)

)−1
: W → V .

In this case the implicit function theorem guarantees that the kernel of the constraint function,

c−1(0), implicitly defines a Fréchet differentiable function from the input space to the output space,

f : U → V that satisfies c(x, f (x)) = 0.

As in the finite-dimensional case we can calculate the Fréchet derivative of this implicit func-

tion by differentiating the constraint function,

0 =
δc
δx
(x)

=
δc
δx
(x, y) +

δc
δy
(x, y) ◦

δy

δx
(x).

Because δc/δy is invertible at (x, f (x)) we can immediately solve for δy/δx to give

δ f
δx
(x)︸︷︷︸

U→V

= −

(
δc
δy
(x, f (x))

)−1

︸              ︷︷              ︸
W→V

◦
δc
δx
(x, f (x))︸        ︷︷        ︸
U→W

.

Moving forward we will denote J f = δ f /δx(x) the Fréchet Jacobian.
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A.4.2 Evaluating Directional Derivatives of Infinite-Dimensional Implicit Functions

While we can handle infinite dimensional spaces mathematically any practical automatic dif-

ferentiation implementation will be restricted to finite dimensional inputs and final outputs. To

that end we will assume that the input space is real, X = RI , while allowing the output space Y

to be infinite dimensional, for example corresponding to a smooth trajectory or a latent field. We

will use the summary function, however, to project that potentially-infinite dimensional output to

a finite-dimensional real space, g : Y → RJ . For example we might consider a dynamical system

that defines an entire trajectory but project out only the finite-dimensional final state.

In order to implement such a system in a reverse mode automatic differentiation library we

then need to be able to evaluate the reverse directional derivative

J†
g◦ f (x)(α) =

(
J†f (x) ◦ J†g ( f (x))

)
(α).

Because g ◦ f is a real-to-real map the total action is given by a matrix-vector product,

J†
g◦ f (x)(α) = JT

g◦ f · α,

but the component operators J†f (x) and J†g ( f (x)) will not be unless Y is a finite-dimensional real

space.

Here we will consider the generalizations of the three methods for evaluating this directional

derivative that we constructed in Section A.3.

Trace Method.

Although we can’t practically construct a numerical method for an implicit function f : RI →

Y with infinite-dimensional output space, we often can construct numerical methods for the finite-

dimensional composition g ◦ f : RI → RJ . Numerical integrators for ordinary and partial differ-

ential equations, for example, discretize Y in order to approximate the finite dimensional outputs
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of g ◦ f without having to confront an infinite dimensional space directly.

Because the intermediate calculations of the numerical solver will be finite-dimensional we im-

mediately apply the trace method discussed in Section A.3.2, automatically differentiating through

each iteration of the solve, to approximate Jg◦ f (x)(α). As in the finite-dimensional case, however,

this direct approach is often too computationally expensive and memory intensive to be practical.

Infinite-Dimensional Implicit Function Theorem.

In theory the reverse directional derivative is given immediately by the implicit function theo-

rem,

J†
g◦ f (x)(α) =

(
J†f (x) ◦ J†g ( f (x))

)
(α)

=
©­«−

(
δc
δx
(x, f (x))

)†
◦

((
δc
δy
(x, f (x))

)†)−1

◦ J†g ( f (x))
ª®¬ (α).

Unfortunately whenever Y is infinite-dimensional each of these Fréchet derivatives will be infinite

dimensional operators that are difficult, if not impossible, to implement in practice. For example

J†g ( f (x)) maps the finite covector α to an infinite dimensional space that can’t be represented in

finite memory.

The Infinite-Dimensional Adjoint Method.

With a careful use of Fréchet derivatives the adjoint method defined in Section 6 generalizes to

the case where Y and Z are general Banach spaces. As usual we consider a particular input, x ∈ X ,

and the neighborhoods x ∈ U ⊂ X , V ⊂ Y , and W ⊂ Z .

We first define a binary Lagrangian functional

L : U × V → R
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that gives a unary functional when we substitute the solution of the implicit function,

L(x) = L(x, f (x))

with the Fréchet derivative
δL

δx
(x) = J†

g◦ f (x)(α).

Next we introduce a mapping Λ : W → R that preserves the kernel of the constraint function,

Λ ◦ c(x, y) = 0 whenever c(x, y) = 0. Composing this mapping with the constraint function gives

the constraint Lagrangian functional,

Q = Λ ◦ c : U × V → R,

with Q(x, f (x)) = 0 for all x ∈ U.

Together these two functionals define an augmented Lagrangian functional,

J = L + Q,

along with the corresponding unary functional

J(x) = J(x, f (x))

= L(x, f (x)) + Q(x, f (x))

= L(x, f (x)),

because the constraint functional vanishes by construction when evaluated at the solution to the

constraint problem.
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The total derivative of this augmented unary functional is given by

δJ

δx
(x) =

δJ

δx
(x, f (x))

=
δJ

∂x
(x, f (x)) +

δJ

δy
(x, f (x)) ◦

δ f
δx
(x).

If we could engineer a map Λ such that the adjoint system δJ/δy vanishes,

0 =
δJ

δy
(x, f (x))

=
δL

δy
(x, f (x)) +

δQ

δy
(x, f (x))

=
δL

δy
(x, f (x)) +

δΛ

δc
(x, f (x)) ◦

δc
δy
(x, f (x))

then the reverse directional derivative would reduce to

J†
g◦ f (x)(α) =

δJ

δx
(x, f (x))

=
δL

δx
(x, f (x)) +

δQ

δx
(x, f (x))

=
δL

δx
(x, f (x)) +

δΛ

δc
(x, f (x)) ◦

δc
δx
(x, f (x)).

Unfortunately if Y is infinite-dimensional then the adjoint system also becomes infinite-dimensional,

and the general Fréchet derivatives will typically be too ungainly to implement in practice.

One important exception is when Y is a Sobolev space. Informally a Sobolev space of order k

is an infinite-dimensional Banach space comprised of integrable, real-valued functions whose first

k derivatives are sufficiently well-defined. What makes Sobolev spaces so useful is that a large

class of functionals over these spaces can be written as integrals.

Consider for example the input space T ⊆ R, the output space S ⊆ RN , and the Sobolev space

Y of k-times differentiable functions y : T → S, such as those arising from the solutions to k-th
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order ordinary differential equations. Any integral of the form

G(y) =
∫

T
dt g

(
t,y(t),

dy
dt
(t), . . . ,

dKy
dtK (t)

)
≡

∫
T

dt g
(
t,y(t),y(1)(t), . . . ,y(K)(t)

)
defines a unary, real-valued functional G : Y → R whose Fréchet derivative is given by

δG

δy
(y) =

δ

δy

∫
T

dt g
(
t,y(t),y(1)(t), . . . ,y(K)(t)

)
=

∫
T

dt

[
∂g

∂y

(
t,y(t),y(1)(t), . . . ,y(K)(t)

)
+

K∑
k=1

∂g

∂y(k)
(
t,y(t),y(1)(t), . . . ,y(K)(t)

)
·
δy(k)

δy

]
.

Similarly if X ⊆ RI then

G(x,y) =
∫

T
dt g

(
x, t,y(t),y(1)(t), . . . ,y(K)(t)

)
defines a binary, real-valued functional G : X × Y → R. Consequently we can construct a large

class of Lagrangian functionals and constraint functionals as integrals,

L(x,y) =
∫

T
dt l

(
x, t,y(t),y(1)(t), . . . ,y(K)(t)

)
Q(x,y) =

∫
T

dt q
(
x, t,y(t),y(1)(t), . . . ,y(K)(t)

)
with the corresponding augmented Lagrangian,

J(x,y) =
∫

T
dt j

(
x, t,y(t),y(1)(t), . . . ,y(K)(t)

)
=

∫
T

dt
[

l
(
x, t,y(t),y(1)(t), . . . ,y(K)(t)

)
+ q

(
x, t,y(t),y(1)(t), . . . ,y(K)(t)

) ]
.
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The choice of l needs to verify the condition that

J†
g◦ f (x)(α) =

δ

δx
L(x, f (x))

=
δ

δx

∫
T

dt l
(
x, t,y(t),y(1)(t), . . . ,y(K)(t)

)
=

∫
T

dt
[

∂l
∂x

(
x, t,y(t),y(1)(t), . . . ,y(K)(t)

)
+

K∑
k=1

∂l
∂y(k)

(
t,y(t),y(1)(t), . . . ,y(K)(t)

)
·
δy(k)

δx

]
.

Depending on the problems, choosing l can be straightforward or require a bit more work, as we

will see in the examples. The choice of q needs to satisfy the condition that, for all x ∈ U,

0 = Q(x, f (x))

=

∫
T

dt q
(
x, t,y(t),y(1)(t), . . . ,y(K)(t)

)
.

One straightforward strategy is to define the integrand q such that it vanishes whenever evaluated

at the solution, (x, f (x)). We can accomplish this for example by taking q to be the Sobolev inner

product of the constraint function, f , with an auxiliary function λ ∈ Z ,

q(x, f (x)) = 〈λ, c(x, f (x))〉 ,

where 〈 , 〉 denotes the Sobolev inner product. When evaluated at the solution the constraint func-

tion c vanishes so that the above inner product, and hence the integrand q, also vanish.
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When using functionals of this form the reverse directional derivative becomes

J†
g◦ f (x)(α) =

δJ

δx
(x, f (x))

=

∫
T

dt

[
∂ j
∂x

(
x, t,y(t),y(1)(t), . . . ,y(K)(t)

)
+
∂ j
∂y

(
x, t,y(t),y(1)(t), . . . ,y(K)(t)

)
·

dy
dx
(t)

+

K∑
k=1

∂ j
∂y(k)

(
x, t,y(t),y(1)(t), . . . ,y(K)(t)

)
·
δy(k)

δy
·

dy
dx
(t)

]
=

∫
T

dt

[
∂ j
∂x

(
x, t,y(t),y(1)(t), . . . ,y(K)(t)

)
+
∂ j
∂y

(
x, t,y(t),y(1)(t), . . . ,y(K)(t)

)
·

dy
dx
(t)

+

K∑
k=1

∂ j
∂y(k)

(
x, t,y(t),y(1)(t), . . . ,y(K)(t)

)
·

dy(k)

dx
(t)

]
.

Because the elements of the Sobalev space are continuous we can simplify the terms in the last line

by repeated application of Stokes’ Theorem,

∫
T

dt
∂ j
∂y(k)

·
dy(k)

dx
=

k∑
k ′=0
(−1)k

′

[
dk ′

dtk ′

(
∂ j
∂y(k)

)
dk−k ′−1

dtk−k ′−1

(
dy
dx

)]
∂T

+ (−1)k
∫

T
dt

dk

dtk

(
∂ j
∂y(k)

)
·

dy
dx
,

where we have dropped the arguments to ease the notational burden. Substituting this into the

reverse directional derivative gives

J†
g◦ f (x)(α) =

∫
T

dt
∂ j
∂x

+

K∑
k=1

k∑
k ′=0
(−1)k

′

[
dk ′

dtk ′

(
∂ j
∂y(k)

)
dk−k ′−1

dtk−k ′−1

(
dy
dx

)]
∂T

+

∫
T

dt

[
∂ j
∂y
+

K∑
k=1
(−1)k

dk

dtk

(
∂ j
∂y(k)

)]
·

dy
dx
.
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If we can engineer a q such that j solves the differential adjoint system

0 =
K∑

k=1

k∑
k ′=0
(−1)k

′

[
dk ′

dtk ′

(
∂ j
∂y(k)

)
dk−k ′−1

dtk−k ′−1

(
dy
dx

)]
∂T

0 =
∂ j
∂y
+

K∑
k=1
(−1)k

dk

dtk

(
∂ j
∂y(k)

)
then the reverse directional derivative reduces to the manageable form

J†
g◦ f (x)(α) =

∫
T

dt
∂ j
∂x

(
x, t,y(t),y(1)(t), . . . ,y(K)(t)

)
=

∫
T

dt
[

∂l
∂x

(
x, t,y(t),y(1)(t), . . . ,y(K)(t)

)
+
∂q
∂x

(
x, t,y(t),y(1)(t), . . . ,y(K)(t)

) ]
.

For different choices of Y the form of the functionals, their Fréchet derivatives, and the result-

ing differential adjoint system will vary, but the basic procedure of the adjoint method remains

the same. By considering more sophisticated Sobelev spaces this general adjoint method can be

applied to partial differential equations and other more sophisticated infinite-dimensional implicit

systems.

A.4.3 Demonstrations

The particular differential adjoint system we have derived in Section A.4.2 is immediately

applicable to implicit systems defined by ordinary differential and algebraic differential equations.

In this section we demonstrate that application on two such systems.

Ordinary Differential Equations.

Consider a time interval T = [0, τ] ⊂ R and the N-dimensional trajectories that map each

time point to an N-dimensional state, y : T → RN . The space of trajectories that are at least

once-differentiable forms a first-order Sobalev space, Y .
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A linear system of first-order, ordinary differential equations

dy
dt
= r(x,y, t),

along with an initial condition y(0) = u(x), defines a separate constraint for the trajectory behavior

at each t ∈ T ,

c(x,y)(t) =
dy
dt
(t) − r(x,y)(t)

c(x,y)(0) = y(0) − u(x).

Collecting all of these constraints together defines an infinite-dimensional constraint function c :

X × Y → Z where Z is also the space of differentiable functions that map from T to RN .

The summary function g : y 7→ y(τ) projects infinite-dimensional trajectories down to their

N-dimensional final states so that the composition g ◦ f maps inputs x ∈ X to a final state at time

t = τ. In order to implement this map into a reverse mode automatic differentiation library we

need to be able to implement the reverse directional derivative Jg◦ f (x)(α).

To implement the adjoint method we need a Lagrangian functional that satisfies

dL
dxi
(x, f (x)) =

(
dy
dxi
(T)

)T

· α.

Integrating the defining differential equation gives an integral functional that provides a particularly

useful option,

L(x,y) = uT (x) · α +
∫ τ

0
dt rT (x,y, t) · α.

Next we need to construct a functional Q that vanishes when when evaluated at the implicit

solution. Integrating over the constraint function gives

Q(x,y) =
[
y(0) − u(x)

]T

· µ +

∫ T

0
dt

[
dy
dt
(t) − r(x,y, t)

]T

· λ(t),
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for any function λ : R→ RN and constant µ ∈ RN .

Substituting these integral functionals into the differential adjoint system that we derived in

Section A.4.2 yields the system

0 =
(

dy
dx
(0)

)T

· (µ − λ(0)) +
(

dy
dx
(τ)

)T

· λ(τ)

0 =
(
∂r
∂y
(x,y, t)

)T

· (α − λ(t)) −
dλ
dt
(t).

The boundary terms vanish if we take µ = λ(0) and λ(τ) = 0 while the differential term vanishes

for the λ(t) given by integrating λ(τ) = 0 backwards from t = τ to t = 0. In other words the

differential adjoint system defines a linear, first-order ordinary differential equation that reverses

time relative to our initial ordinary differential equation.

Once we’ve solved for λ(t) the reverse directional derivative is given by the partial derivatives

of the augmented Lagrangian with respect to x,

J†
g◦ f (x)(α) =

(
∂u
∂x
(x)

)T

· (α − λ(0)) +
∫ T

0
dt

(
∂r
∂x
(x,y, t)

)T

· (α − λ(t)) .

While we do have to solve both the nominal and adjoint differential equations, these solves re-

quire evaluating only finite-dimensional derivatives. We have completely avoided any infinite-

dimensional Fréchet derivatives.

Differential Algebraic Equations.

Introducing an algebraic constraint to the previous systems defines a differentiable algebraic

system, or DAE. A DAE might, for example, impose the constraint that the component states at

each time sum to one so that the states can model how the allocation of a conserved quantity

evolves over time.

To simplify the derivation we start by decomposing the trajectories y(t) ∈ RN into a differential

component, yd ∈ RD, and an algebraic component, ya ∈ RA, with N = D + A. A differential
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algebraic constraint function can similarly be decomposed into a differential constraint function,

cd(x,y, Ûy, t) ∈ RD,

where Ûy is shorthand for dy/dt, and an algebraic constraint function,

ca(x,y, t) ∈ RA.

with c = (cd, ca)T .

If the differential constraint is given by a linear, first-order differential equation then the differ-

ential constraint function becomes

cd(x,y, Ûy, t) = Ûyd − rd(x,y, t)

cd(x,y, Ûy,0) = y(0) − u(x).

When the constraints are consistent this differential algebraic system implicitly defines a map

from inputs x ∈ X to N-state trajectories, y ∈ T ×RN . We can also write this as a map from inputs

and times to states,

f : X × T → RN,

such that cd(x, f(x), Ûf(x), t) = 0 and ca(x, f(x), t) = 0.

As in the previous example we will consider a summary function that projects the infinite-

dimensional trajectories down to their N-dimensional final states, g : y 7→ y(τ), so that the com-

position g ◦ f maps inputs x ∈ X to a final state at time t = τ. Our goal is then to evaluate the

finite-dimensional reverse directional derivative Jg◦ f (x)(α).

As with ordinary differential systems integrating the trajectory provides an appropriate integral

functional,

L(x,y) = uT (x) · α +
∫ τ

0
dt ÛyT (x, t) · α
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that satisfies
dL
dx
(x, f(x)) =

(
df
dx
(x, τ)

)T

· α.

Unlike in the ordinary differential case, however, the differential algebraic system does not imme-

diately provide an analytical expression for Ûy(x).

The first-order linear differential equation does provide the derivative of the differential com-

ponent,

Ûyd = rd .

In order to obtain the derivative of the algebraic component we have to differentiate the algebraic

constraint,

0 =
d
dt

ca(x,y, t)

=
∂ca

∂yd
Ûyd(x, t) +

∂ca

∂ya Ûy
a(x, t) +

∂ca

∂t
(x, t),

or

Ûya = −

[
∂ca

∂ya

]−1 (
∂ca

∂yd
Ûyd +

∂ca

∂t

)
,

where we assume ∂ca/∂ya is square invertible.

The constraint functional Q is identical to that from the ordinary differential equation system,

C(x,y) =
[
y(0) − u(x)

]T

· µ +

∫ τ

0
dt c(x,y, t)T · λ(t).

Plugging J = L + Q into the results of Section A.4.2 gives the system

0 =
[

dy
dxi
(0) −

du
dxi
(x)

]T

· µ +

(
dy
dxi

)T

· λD0(t)

�����τ
0

0 =
(
∂r
∂y
(x, y, t)

)T

· α +

(
∂c
∂y
(x, y, t)

)T

· λ(t) − ÛλD0(t)

233



where

λD0(t) =
(
∂c
∂y
(x,y, t)

)T

· λ(t)

=


∂cd
∂yd

∂cd
∂ya

∂ca
∂yd

∂ca
∂ya

 · λ(t)
=


ID×D 0D×A

0A×D 0A×A

 · λ(t)
=


λ1:D(t)

01×A

 .
Decomposing each term in the differential adjoint system into algebraic and a differential com-

ponents gives


(
∂r
∂yd
(x,y, t)

)T
· α +

(
∂cd
∂yd (x,y, t)

)T
· λd(t) +

(
∂ca
∂yd (x,y, t)

)T
· λa(t) − ÛλD0(t)(

∂r
∂ya (x,y, t)

)T
· α +

(
∂cd
∂ya (x,y, t)

)T
· λd(t) +

(
∂ca
∂ya (x,y, t)

)T
· λa(t)

 =

0D

0A

 .
which defines an adjoint DAE

To ensure that the boundary term vanish we need to set µ = λD0(0) and λD0(τ) = 0N . The

algebraic component of λ at t = τ is also given by

0A =

(
∂r
∂ya
(x,y, τ)

)T

· α + 0 +
(
∂ca

∂ya
(x,y, τ)

)T

· λa(τ)

λa(τ) = −

[(
∂ca

∂ya
(x,y, τ)

)]−1
·

(
∂r
∂ya
(x,y, τ)

)T

· α,

where we recall our assumption that ∂ca/∂ya is square invertible.

Now we can ensure that the differential term vanishes by integrating this adjoint DAE back-

wards from the terminal condition λ(τ) = (λd(τ),λa(τ))T at t = τ to an initial condition at t = 0.
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Once we have solved for λ(t) the reverse directional derivative reduces to

J†
g◦ f (x)(α) = −

(
du
dxi

)T

· λD0(0) +
∫ τ

0
dt

(
∂r
∂xi
(x, y, t) + λT ∂c

∂xi
(x, y, t)

)T

· λ(t).

A.5 Discussion

The implicit function theorem allows us to construct an expression for the directional deriva-

tives of an implicit function as a composition of Fréchet derivatives. The adjoint method computes

these directional derivatives directly without evaluating any of the intermediate terms.

When the output of the implicit function is finite-dimensional these differential operators can be

implemented with linear algebra, although care and experience is required to ensure that the linear

algebra operations are as efficient as possible. While the adjoint method yields the same result, it

naturally incorporates any available structure in the implicit system so that optimal performance

can be achieved automatically as we saw in our discussion on difference equations (Section A.3.3).

If the output of the implicit function is infinite-dimensional then the component Fréchet deriva-

tives that make up the directional derivatives of the implicit function can no longer be evaluated di-

rectly, making the composition intractable. Implementing the adjoint method also requires Fréchet

derivatives which in general we cannot evaluate. In the important special case where the output

of the implicit function falls into a Sobolev space, however, we can engineer the augmented La-

grangian so that the Fréchet derivatives reduce to tractable functional derivatives. This is notably

the strategy we deploy when in the case of ODEs and DAEs (Section A.4.3).

While the adjoint method is more generally applicable it is not as systematic as the implicit

function theorem method. The practicality and performance of the method depends on the choice

of Lagrangian and constraint functionals. Engineering performant functionals, let alone valid func-

tionals at all, is by no means trivial. Fortunately in many problems the structure of the implicit

system guides the design.

Beyond the implicit function theorem and adjoint methods, we may use the trace method which

automatically differentiates through the trace of a numerical solver. In most cases this approach
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leads to computationally expensive and memory intensive algorithms.

For finite-dimensional systems we could also construct a “forward method” that computes

the Jacobian J = Jg◦ f before evaluating its action on an input sensitivity or adjoint to form the

wanted directional derivatives. As we discussed in Section A.3.2, however, fully computing J first

is always less efficient that the iterative evaluation of the directional derivative; see also Gaebler

(2021).

Although not as general, we can also construct a forward method that fully computes the Jaco-

bian J = Jg◦Jf for certain infinite-dimensional problems. This approach notably applies to certain

classes of ODEs and DAEs (Appendix A.7). In these cases the computational trade-offs between

the forward method and the adjoint method is more nuanced; which method is more efficient de-

pends on the specific of the problem. For example Rackauckas et al. (2018) compares the forward

and adjoint approaches to implementing automatic differentiation for ODEs. For small ODE sys-

tems the overhead cost associated with solving the adjoint system can make the method relatively

slow, but as the size of the system and the dimension of x increases the adjoint method benefits

from superior scalability. See also Hindmarsh and Serban (2020) and Betancourt, Margossian, and

Leos-Barajas (2020) for additional scaling discussions.
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A.7 Appendix: Infinite-Dimensional Forward Method

As in Section A.4.2 consider finite-dimensional real input, X = RI , an infinite-dimensional

output space Y , and the summary function g : Y → RJ . The forward method explicitly computes

the matrix representation of the full Jacobian, Jg◦ f , before contracting this matrix with a sensitivity

or adjoint vector to implement directional derivatives for automatic differentiation.

The implicit function theorem prescribes a composite expression for Jg◦ f , but in general we

cannot evaluate the intermediate Fréchet derivatives. In certain special cases, however, we can

236



bypass the implicit function theorem and evaluate Jg◦ f directly.

As with the adjoint method, we focus on the special case where Y is a Sobolev space. Theoret-

ically we can reduce a key Fréchet derivative to a functional derivative, which we can evaluate by

solving a forward differential system. In practice our ability to construct such a system and solve

it depends on the specifics of the problem.

Let Y be the order K Sobolev space of functions T ⊂ R → RN , and suppose that we can

construct a functional

P : X × Y → RJ

x,y 7→ P(x,y),

which satisfies
δP

δx
(x) = Jg◦ f (x).

In addition, assume there exists such a functional which takes the form of an integral,

P(x,y) =
∫

T
dt p(x, t,y(t), ...).

For example if our summary function g is a Sobolev inner product with the implicit function,

(g ◦ f )(x) = 〈γ, f (x)〉

=

∫
dt γ(t) f (x, t)

=

∫
dt γT (t) · y(x, t)

then we can take

p = γT (t) · y(x, t),

and obtain a satisfactory functional P.
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Taking the derivative with respect to x gives,

δP

δx
=

∫
T

dt
dp
dx

(
x, t,y(t),y(1)(t), · · · ,y(K)(t)

)
=

∫
T

dt
∂p
∂x
+

K∑
k=0

∂p
∂y(k)

dy(k)

dx
,

where crucially the Fréchet derivative reduces to a functional derivative.

In order to evaluate this integral we need to evaluate the derivatives of the implicit function,

dy(k)/dx, at all times t ∈ T . In theory we could achieve this by fully constructing the first-order

Fréchet derivative from the implicit function theorem, repeatedly differentiating it, and then eval-

uating all of those Fréchet derivatives at each time t.

The need to evaluate Fréchet derivatives, however, makes this approach infeasible in practice.

A more viable alternative is to evaluate the derivatives only at specific times, where they reduce to

manageable finite-dimensional objects.

By definition our constraint function defines a map c : X ×Y → Z where Y and Z are both the

space of functions which map from T to RN . In this case the constraint function can equivalently

be defined as a collection of maps X × Y → RN for each t ∈ T . Denoting these maps as c(x, y, t)

the implicit function f : X → Y is defined by the system of constraints,

c(x, f (x), t) = 0, ∀ t ∈ T .

Fixing t and then differentiating with respect to the input x gives

0 =
∂c
∂x
(t) +

K∑
k=0

∂c
∂y(k)

dy(k)

dx
(t)

=
∂c
∂x
(t) +

K∑
k=0

∂c
∂y(k)

(
dy
dx

) (k)
(t).

This forward differential system implicitly defines the derivative evaluations at each t as a differen-

tial equation. Once we’ve solved for y(t) we can, at least in theory, solve this forward differential
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system for each dy(k)/dx (x, f (x), t) and then evaluate

∫
T

dt
K∑

k=0

∂p
∂y(k)

dy(k)

dx
=

K∑
k=0

∫
T

dt
∂p
∂y(k)

dy(k)

dx
,

as a sum of one-dimensional numerical quadratures.

If c(x, y, t) is a linear a function of dy/dt and does not depend on higher-order derivatives,

c(y, x, t) =
dy
dt
(t) − f (x,y, t) = 0,

then the forward differential system becomes particularly manageable. In particular the forward

differential system is also linear in the first-order derivative with respect to t,

dc
dx
(y, x, t) =

d
dt

dy
dx
(t) −

∂ f
∂x
(x,y, t) −

∂ f
∂y

dy
dt
(t) = 0.

In the absence of such a linearity we need to solve for the evaluations of the trajectory y, the first-

order derivative dy/dx, and the higher-order derivatives of y at the given x and every t needed for

the numerical quadratures.

For a demonstration of this forward approach on certain ODEs and DAEs see (Hindmarsh and

Serban 2020).

Finally similar to the Sobolev adjoint method (Section A.4.2) the above derivation general-

izes immediately to constrained systems over Sobolev spaces of functions T ⊂ RM → RN , with

M > 1. Here instead of an ordinary differential forward system we recover a partial differential

forward system, and the Jacobian is recovered as a sum of multidimensional integrals instead of

one-dimensional integrals.

239


	Acknowledgments
	Dedication
	Preface
	Letting Uncertainty intervene
	What makes Bayesian computation hard?
	General purpose and specialized algorithms
	A Review of Hamiltonian Monte Carlo
	A primer on Markov chains Monte Carlo
	Transition kernel
	Tuning parameters
	Gradient computation

	Example of challenging priors: hierarchical models
	Example of challenging likelihoods: ODE-based models
	Example: planetary motionThis section is based on the case study Bayesian model of planetary motion: exploring ideas for a modeling workflow when dealing with ordinary differential equations and multimodality Margossian:2020-planet.
	Example: Michaelis-Menten pharmacokinetic model This section is based on the conference poster, Solving ODEs in a Bayesian context: challenges and opporunities presented at the 2021 Population Approach Group in Europe conference; see Margossian:2021-page.
	Concluding remarks

	Acknowledgment

	Nested : assessing the convergence of Markov chains Monte Carlo when running many short chains
	Introduction
	Three perspectives on 
	Nested 
	Limitations when using independent chains
	Initialization requirement for the chains
	Violation of stationarity and threshold for n 
	Rank-normalization and analysis under normal approximation
	Limitations of n 

	Adaptive warmup length
	Existing method
	Revision using n 

	Experiments
	Discussion
	Acknowledgment
	Appendix (Supplementary Material): Pharmacokinetic model

	Hamiltonian Monte Carlo using an adjoint-differentiated Laplace approximation
	Introduction
	Existing methods

	Aim and results of the paper
	Implementation for probabilistic programming
	Using automatic differentiation in the algorithm of Rasmussen:2006
	Adjoint method to differentiate the approximate log marginal density

	Gaussian process with a Poisson likelihood
	General linear regression model with a regularized horseshoe prior
	Sparse kernel interaction model
	Discussion
	Appendix (Supplementary Material)
	Newton solver for the embedded Laplace approximation
	Building the adjoint method
	Computer code
	Tuning dynamic Hamiltonian Monte Carlo
	Automatic differentiation variational inference
	Model details


	General Adjoint-differentiated Laplace approximation
	Introduction
	Classical implementation and limitation
	Existing methods
	Aim and results

	Newton solvers and B-matrices
	B = I + W12 K W12
	B = I + K12 T W K12
	B = I + KW

	Gradients with respect to  and 
	Automatic differentiation of the likelihood
	Allowed operations with automatic differentiation
	Principles for an efficient implementation
	Differentiating the negative Hessian, W
	Differentiating the approximate marginal density
	General adjoint-differentiation

	Posterior draws for the marginalized out parameters
	Numerical experiment
	Discussion
	Code
	Appendix: proof of Lemma 5.4

	Simulating Ising and Potts models at critical and cold temperatures using auxiliary Gaussian variables
	Introduction
	Examples of Ising and Potts models
	Existing methods

	Choices of Auxiliary Gaussian
	Auxiliary Gaussian for Potts
	Sampling based on an Auxiliary Gaussian
	Low-rank Auxiliary Gaussian
	Low-rank approximation error

	Numerical experiments
	Performance metrics
	Potts models on a graph
	Spin Glass Potts models

	Discussion
	Aknowledgment
	Appendix (Supplementary Material)
	Missing proofs
	Specialized Auxiliary Gaussian algorithm for q=2
	Overview of the Swendsen-Wang and Wolff algorithms
	Overview of the tempering algorithm


	References
	Efficient Automatic Differentiation of implicit functions
	Introduction
	Automatic Differentiation
	A Little Derivative
	Express Yourself
	Automatic Differentiation

	Automatic Differentiation of Finite-Dimensional Implicit Functions
	The Finite-Dimensional Implicit Function Theorem
	Evaluating Directional Derivatives of Finite-Dimensional Implicit Functions
	Demonstrations

	Automatic Differentiation of Infinite-Dimensional Implicit Functions
	The Infinite-Dimensional Implicit Function Theorem
	Evaluating Directional Derivatives of Infinite-Dimensional Implicit Functions
	Demonstrations

	Discussion
	Acknowledgment
	Appendix: Infinite-Dimensional Forward Method


