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6 Variational Inference

We have seen how approximate sampling techniques, such as Markov chain Monte
Carlo and importance sampling, can help us construct Monte Carlo estimators with
which we can learn summaries of the posterior.

Another paradigm is to find a tractable distribution which approximates the posterior.
By “tractable”, I mean that the distribution is easy to manipulate: for example, it is
straightforward to compute the mean and variance, and to draw samples. Variational
inference (VI) is a broad class of methods to find tractable approximations to the
posterior.

The task of VI is to find the best distribution q inside a pre-specified family Q of
tractable distributions to approximate the target distribution p,

q∗ = argminq∈QD(p||q), (1)

where D is a divergence between p and q. Hence VI turns Bayesian inference into an
optimization problem.

The two fundamental tuning choices of VI are (i) the family Q of approximations and
(ii) the objective function which we minimize. The trade-offs for Q are rather intuitive:
a rich family of approximations leads to a better approximation but often complicates
the optimization.

The choice of objective function is subtler: there exists many ways to compare distri-
butions. By definition, a valid divergence must be such that

D(p||q) = 0 if and only p = q, and otherwise D(p||q) > 0.

But this constraint only somewhat restricts our options. There are many valid di-
vergences and, if we have a restricted family of approximations, i.e., p /∈ Q, then
different divergences produce different solutions. Hence, we must examine how well
different solutions approximate summaries of the posterior. At the same time, cer-
tain divergences are much more difficult to optimize than others. For example, the
total variation distance, which we studied for MCMC, is a valid divergence but cannot
be minimized through standard optimization techniques.

Before getting into the details of how VI works, let’s highlight two classical applica-
tions of VI:
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• Topics model [Blei et al., 2003]. VI is used to train a probabilistic model, with
which 1.8 million New York times article were sorted into topics based on the
words contained in each article (“bag of words” representation of the article).
Once trained, the model determines itself the topics, the words in each topic,
and ascribes a distribution of topics to each article, e.g., 80% international
affairs, 10% finance, · · · .

• Variational autoencoder [Kingma and Welling, 2014, Rezende et al., 2014].
This algorithm—we will see how it breaks into a probabilistic model and an in-
ference procedure—is used to compress high-dimensional images. The model
parameterizes each high-dimensional image by a low-dimensional latent vari-
able and the image can be reconstructed by learning a neural network (the
“decoder”) which takes in the low-dimensional representation and outputs the
reconstructed image.

6.1 Gaussian Variational Inference

A classic off-the-shelf VI algorithm is Gaussian variational inference (G-VI). We will
use G-VI as a concrete example to introduce several concepts.

Suppose we have a target p(z) with z ∈ Rd. In practice, the space of z, denoted Z, may
not be Rd but as long as this space is continuous, we can apply a transformation to
map Z to Rd. For example, if a variable zi is constrained to be positive, we can apply
a log transformation.

In G-VI, Q is the family of Gaussian distributions. Each member is fully defined
by the variational parameters λ = (ν,Ψ), where ν ∈ Rd is the mean and Ψ is the
covariance matrix. Often times, Ψ is taken to be a diagonal matrix, primarily to
reduce the number of variational parameters from O(d2) to O(d). This approach is
called the mean-field approximation, although I also like the more descriptive name,
factorized approximation. The resulting algorithm is factorized Gaussian variational
inference (FG-VI).

Eq. (1) can be now be written as an optimization problem over the space of variational
parameters,

λ∗ = argminλD(p||qλ). (2)

The most common objective function in VI is the reverse Kullback-Leibler divergence,

KL(q||p) =

∫
(log q(z)− log p(z))q(z)dz, (3)

which compares densities over measurable sets. In your homework assignment,
you showed that KL(q||p) was a valid divergence, by showing that KL(q||p) ≥ 0 and
KL(q||p) = 0 if and only if q = p. Compared to other divergences, the reverse KL is
relatively straightforward to analyze theoretically and to minimize.

Example: FG-VI applied to a multivariate Gaussian. Suppose p is a multi-
variate Gaussian target with mean µ and a non-diagonal covariance matrix Σ.
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Then it can be shown analytically (as you did in your homework assignment)
that the optimal variational parameters are

ν = µ Ψii = 1/[Σ−1]ii. (4)

In words, FG-VI recovers the mean and the marginal precisions of p. (Recall that
the precision matrix is the inverted covariance matrix.) On the other hand, q
misestimates other properties of p: for example, it underestimates the variance
(as you showed in the homework) and the entropy.1

More generally, VI can recover certain properties of p even if q 6= p. The ability of VI
to produce accurate estimators has notably been studied in asymptotic limits, where
the number of observations N →∞ and where, under certain regularity conditions,
the posterior becomes Gaussian per the Bernstein-von Mises theorem [e.g. Katsevich
and Rigollet, 2024].

6.2 Variational inference in the presence of symmetry

Recent work has demonstrated VI’s ability to recover properties of p when p and Q
exhibit certain symmetries [Margossian and Saul, 2025]. Here, we’ll examine how VI
can recover the mean in the presence of even-symmetry.

Definition 1. (Even- and odd-symmetry) We say a function f is even-symmetric
about ν if for all z ∈ Rd,

f(z + ν) = f(−z + ν). (5)

Similarly, we say a function f is odd-symmetric about ν if for all z ∈ Rd,

f(z + ν) = −f(−z + ν). (6)

Consider now a location family of distributions with location parameter ν and base
distribution q0, that is

qν(z) = q0(z − ν), (7)

and suppose that q0 is even-symmetric. Examples of such distributions are the Gaus-
sian, student-t and Laplace distributions.

Theorem 2. Let Q be a location-family with even-symmetric based distribution q0.
Suppose p is even-symmetric about µ.

Furthermore, suppose p and Q are such that the order of differentiation and inte-
gration can be changed when computing ∇νKL(qν ||p).

Then ν = µ is a stationary point of KL(qν ||p).

Proof. We start from the definition of the KL-divergence, eq. (3), and operate a change
1This second result deserves to be nuanced: while the entropy is underestimated, FG-VI can still

yield reasonable estimates of the entropy in certain limits [Margossian and Saul, 2023].
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of variable ζ = z − ν,

KL(qν ||p) =

∫
(log qν(z)− log p(z))qν(z)dz

=

∫
(log q0(ζ)− log p(ν + ζ))q0(ζ)dζ

= −H(q0)− log p(ν + ζ))q0(ζ)dζ, (8)

where H(q0) is the entropy of q0 and doesn’t depend on the variational parameter ν.
We now differentiate with respect ν and use the fact that we can change the order of
integration and differentiation,

∇νKL(qν ||p) = −
∫
∇ν log p(ν + ζ)q0(ζ)dζ,

= −
∫
∇ζ log p(ν + ζ)q0(ζ)dζ, (9)

where in the second line we use the symmetry in the argument of ν and ζ to obtain
a gradient with respect to ζ.

Now suppose ν = µ. Then p(ν + ζ), taken as a function of ζ, is even-symmetric and
its gradient ∇ζp(ν + ζ) is odd-symmetric. Furthermore, we have by assumption that
q0(ζ) is even-symmetric. Hence, the integrand is the product of an odd-symmetric and
an even-symmetric distribution, and is itself odd-symmetric. Therefore, the integral
goes to 0.

Under some additional assumptions (i.e. p is log-concave2), we can show that this
stationary point is a unique minimizer.

If p has a finite first moment, then the point of symmetry corresponds to the mean,
which is then recovered by ν∗. It’s worth noting that the theorem allows for several
misspecification. In particular:

• q may be factorized, even though p is not.

• q and p may have different tail behaviors.

An ongoing research endeavor is to understand how VI’s symmetry-matching prop-
erties generalizes to other symmetries.

6.3 Stochastic optimization for variational inference

In a Bayesian context, the target distribution is the posterior p(z | y) and is typically
only known up to a normalizing constant. Then, the variational objective becomes,

KL(qλ||p) =

∫
(log qλ(z)− log p(z, y) + log p(y))qλ(z)dz

=

∫
(log qλ(z)− log p(z, y))qλ(z)dz + log p(y), (10)

2Although I’m working on relaxing this condition...
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where the laster term, log p(y), can be ignored for the purposes of optimizing λ.

Often times, the VI optimization problem is reformulated as follows,

λ∗ = argmaxλ
∫

(log p(z, y)− log qλ(z))qλ(z)dz, (11)

with the maximized objective termed the evidence lower bound (ELBO). The name
comes from the fact that p(y) is sometimes called the evidence and

0 ≤ KL(qλ||p)
⇐⇒ 0 ≤ log p(y)− ELBO
⇐⇒ ELBO ≤ log p(y). (12)

When doing full Bayesian inference, p(y) does not typically play a role, however we
will see some non-Bayesian applications where p(y) plays a pivotal role.

The first challenge with maximizing the ELBO is that the integral cannot be solved
analytically. Instead, the ELBO is approximated via Monte Carlo and using draws
from qλ (which, in theory, is easy to sample from),

ELBO ≈ 1

B

B∑
b=1

log p(z(b), y)− log qλ(z(b))qλ(z(b))dz, z(b) ∼ qλ. (13)

To do gradient-based optimization, we also need to evaluate the gradient of the target.
Assuming the order of integration and differentiation can be changed,

∇λELBO =

∫
∇λ(log p(z, y)− log qλ(z))qλ(z)dz. (14)

But constructing a Monte Carlo estimator of the gradient is less straightforward,
because the samples z ∼ qλ carry a somewhat hidden dependence on λ, which we
need to differentiate through. (In the integral, this dependence is made explicit in
the density term qλ(z)).

This motivates the reparameterization trick, whereby the dependence on λ and the
stochastic component in z are disentangled. In particular, we want a two-step sam-
pling procedure of the form,

ζ ∼ p(ζ)

z = fλ(ζ), (15)

with f an invertible function. For example, suppose qλ(z) is a univariate normal with
mean µ and variant ψ, and λ = (µ, ψ). Then, a sample from qλ can be obtained as,

ζ ∼ normal(0, 1)

z =
√
ψζ + µ. (16)

Then, applying standard rules for a change of variable with respect to a probability
measure, eq. (14) is rewritten as an integral with respect to ζ,

∇λELBO =

∫
∇λ(log p(fλ(ζ), y)− log qλ(fλ(ζ))q(ζ)dζ. (17)
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Our Monte Carlo estimator for the gradient is then,

∇λÊLBO =
1

B

B∑
b=1

∇λ(log p(fλ(ζ(b)), y)− log qλ(fλ(ζ(b))), ζ(b) ∼ q(ζ). (18)

Optimization is then performed via gradient-descent. That is, starting from an initial
guess λ0, we iteratively update our parameter estimate by following the gradient,

λt = λt−1 + εt∇λÊLBO, (19)

until some convergence criterion is met; for example, wemay require that |∇λÊLBO| ≤ δ
for some tolerance δ or check that the (estimated) ELBO remains stable after several
iterations.

A crucial question is how to choose the step sizes εt. There is a rich literature on the
subject—going all the way back to Newton’s method,3 which sets εt to the inverted
Hessian of the objective function g(λ),

εt = ∇2g(λ). (20)

In standard settings—i.e., when minimizing a convex objective functions—Newton’s
method enjoys a quadratic convergence rate. However the cost of evaluating and
inverting a second-order derivative has made Newton’s method unpopular in settings
where λ is high-dimensional.

Another complication in our setting is that the gradient is not evaluated exactly but
stochastically. This raises the question of whether gradient-descent can converge to
a solution. Proofs of convergence can be obtained by requiring that:

(i) The gradient estimator is unbiased, as is the case when drawing exact sam-
ples from q(ζ).

Interestingly, this condition is met when B = 1, that is we use a single sample.
In my experience, running B � 1 improves the stability and convergence rate of
the algorithm, and what is more samples can be drawn in parallel.

(ii) The step sizes εt decay at a rate that is neither too slow nor too fast. This
condition is captured by the (somewhat mystifying) Robbins-Monroe condition,

∞∑
t=1

εt =∞,
∞∑
t=1

ε2t <∞. (21)

Much of the recent literature on stochastic optimization concerns finding a good
learning schedule {εt}.

There exist a few off-the-shelf optimizers and the most popular ones are currently
Adam and LBFGS. These methods enjoy high-performance implementations in libraries
such as JAX and PyTorch, and provide a good starting point.

3Newton’s method is accredited to Newton himself. The wikipedia page also points to a special case
of the method dating back to the Babylonian in the 16th-19th century BC!
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6.4 Example: Variational inference for the SIR model

Stan provides a G-VI algorithm, called automatic differentiation variational inference
(ADVI) (which unfortunately is not a very descriptive name). The algorithm proceeds
as follows:

1. Transform the parameter θ to an unconstrained variable θ̃ ∈ Rd, using an in-
vertible transformation f , with θ̃ = f(θ).

2. Approximate p(θ̃ | y) by a Gaussian qλ(θ̃)—the Gaussian can either have a di-
agonal covariance matrix, meaning the Gaussian is factorized (“mean-field”) or
have a dense covariance matrix (“full-rank”). The approximation is found by
minimizing KL(qλ(θ̃)||p(θ̃ | y)).

3. Draw θ̃ ∼ qλ(θ̃) and transform back to the original space, θ = f−1(θ̃).

Coding demo. We can run mean-field ADVI for the SIR influenza model. Specifi-
cally, we’ll use the version of the model with a negative binomial likelihood. Since the
joint distribution p(θ, y) remains unchanged, there is no need to revise the model.

In addition to approximating the posterior for the model parameters θ = (γ, β, φ−1), we
can also examine the posterior distribution of some derived quantities, specifically
the recovery time T and the R0 number. Table 1 shows the posterior summaries
obtained with ADVI and is directly translated from the summary() function in cmdStanR.

Mean Median SD MAD q5 q95

γ 0.537 0.536 0.0416 0.0420 0.472 0.610
β 1.75 1.75 0.0499 0.0500 1.68 1.84
φ−1 0.148 0.129 0.0881 0.0702 0.0544 0.320
T 1.87 1.87 0.145 0.147 1.64 2.12
R0 3.29 3.29 0.267 0.268 2.86 3.73

Table 1: ADVI posterior summary statistics

We compare these results to the output obtained with MCMC (Table 2).

Mean Median SD MAD q5 q95 R̂ ESS ESS (tail)
γ 0.541 0.539 0.0450 0.0415 0.470 0.618 1.00 2771 2492
β 1.74 1.73 0.0537 0.0491 1.65 1.82 1.00 2298 2189
φ−1 0.137 0.121 0.0744 0.0600 0.0520 0.276 1.00 2303 2363
T 1.86 1.85 0.155 0.143 1.62 2.13 1.00 2771 2492
R0 3.23 3.21 0.276 0.250 2.82 3.71 1.00 2906 2324

Table 2: MCMC posterior summary statistics

For this particular example, the estimates of posterior summaries returned by MCMC
and ADVI are in close agreement. The model is relatively simple—after all, it’s only
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2-dimensional—but it does involve a likelihood parameterized by an ODE. So it is a
bit surprising that ADVI works so well, despite using a simple approximation.

Notice that the MCMC summary contains three additional columns for diagnostics
to check that the posterior inference is reliable. Unfortunately, these diagnostics are
MCMC specific and do not apply to VI.

Stan’s ADVI checks that the stochastic optimization converges. But unlike for MCMC,
convergence of VI does not guarantee that we have accurate estimates of the posterior—
merely that we found the “best” candidate q∗ ∈ Q to approximate p. (And even then,
convergence diagnostics for optimization are often fooled by local optimas.) If Q is too
restrictive, then q∗ may still be a poor approximation of p.

The lack of automated inference checks for VI is a gap in the workflow.

But checks exist. For example, we can use Pareto-smoothed importance sampling [Yao
et al., 2018], as we did for leave-one-out cross-validation (Section 3). In VI, q∗ is the
proposed distribution and p is the target distribution. Recall that because p is only
known up to a normalizing constant, we must compute self-normalized importance
weights.

Even without validating the inference, we can still perform model criticism, e.g., pos-
terior predictive checks and predictive scores on a validation set.

In many papers which use VI, you’ll find that the authors only perform limited checks
on the inference but always evaluate the performance of the trained model. We may
then reasonably question whether the posterior is accurately estimated, at least not
by MCMC standard, e.g., the kind of accuracy we would get with R̂ ≤ 1.01 and ESS ≥
100, which corresponds to a negligible bias and standard deviation of

√
Varf(z)/10.

Nonetheless, an imperfectly trained model can still produce useful insights and fulfill
its scientific purpose.

Class discussion. Why is it important (or not important) to do inference check in
Bayesian Workflow?

6.5 Example: Variational autoencoder

The variational autoencoder (VAE) is class of machine learning models/algorithms,
which can be decoupled into a probabilistic model and an inference procedure.

6.5.1 Probabilistic model: latent variables and neural network

A latent variable model is a hierarchical model where each observation xn has a cor-
responding latent variable zn. The model also admits a “global” hyperparameter θ,
which is common to all observations xn. A Bayesian model can be specified by the
joint distribution

p(x1:N , z1:N , θ) = p(θ)p(z1:N | θ)
N∏
n=1

p(x1:N | z1:N , θ). (22)
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zn ζ(1) ζ(2) · · · ζ(p) µ

Figure 1: A neural network is a sequence of transformations (“arrows”) between layers
(“nodes”). The first layer is the input layer, the final layer the output layer and all the
layers in between are hidden layers. Each transformation is characterized by a linear
transformation followed by a nonlinear transformation.

In a frequentist setting, the hyperparameter θ is treated as fixed and the model is
specified as a joint over (z1:N , x1:N ) parameterized by θ, pθ(x1:N , z1:N ).

In the canonical VAE, xn is a high-dimensional image, e.g. three color channels for
each pixel, and zn is a low-dimensional representation of the image. θ is the parameter
of a decoder, which stochastically maps zn to xn. One interpretation of the model is
that zn is a compression of xn and the decoder decompresses zn back to xn.

For example, we may model xn (the colors of each pixel) as normally distributed,4
whose mean µ and covariance Σ is the output of a function,

µ = fµ(zn; θ) Σ = fΣ(zn; θ). (23)

In the VAE, the function f is modeled by a neural network. A neural network is a com-
position of transformations starting from an input layer and mapping to an output
layer. The layers in-between are called hidden layers (Figure 1). The transformation
between layers takes in an input ζ(i) and outputs ζ(i+1), typically by applying a linear
transformation followed by a nonlinear transformation,

ζ(i) = σ
(
W (i)ζ(i) + b(i)

)
, (24)

where the matrix W (i) is called the weights of the network, b(i) is the “bias”, and σ
is a non-linear transformation. The weights and biases constitute the parameters of
the neural network,

θ =
(
W (1),W (2), · · · ,W (p), b(1), b(2), · · · , b(p)

)
. (25)

The weight matrix W (i) need not be a square matrix, meaning that the dimension of
ζ(i) and ζ(i+1) can differ. In practice, the hidden layers are often taken to have a larger
dimension than the input and outputs layers.

A common choice for σ is the rectified linear unit (ReLu) function,

σ(α) = max(0, α). (26)

There are many choices on the architecture of the neural network. For example what
should the depth of the network be, i.e. the number of layers? What should be its

4A more exact model would use a categorical distribution, since the color channels are an integer
over [0, 255] but for a hight “count”, a continuous distribution can work reasonably well.
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width, i.e. dimension of intermediate layers? Which nonlinear transformation should
we use?

You may ask yourself why use a neural network in the first place? Neural networks
have had a tremendous success empirically and there exists some theory to explain
this success. In particular, universal approximation theorems provide ideal conditions
under which a neural network can approximate any function f arbitrarily well. A well-
known theorem states that a neural network with one infinitely-wide hidden layer
can approximate any “well-behaved” function. But despite these results, the theory
is often considered to be lagging behind the practice and explaining the remarkable
success of neural networks remains an active area of research.

6.5.2 Inference: Amortized variational inference

Now that we have our model, we can come up with a training procedure.

In a Bayesian setting, the task is to learn the posterior p(θ, z1:N | x1:N ).

In a frequentist setting, we learn θ by maximizing the marginal likelihood,

θ∗ = argmaxθ pθ(x1:N ) =

∫ N∏
n=1

pθ(x1:N | z1:N , θ)p(z1:N )dz1:N . (27)

Notice the unknown z1:N is still treated as a random variable and so the procedure
can be described as a hybrid between a Bayesian and a frequentist approach.

In practice, the integral on the R.H.S of eq. (27) is intractable. To approximate
pθ(x1:N ), we will use the ELBO. Applying eq. (12) to our problem, we have that

ELBO(θ, λ) = pθ(x1:N )− KL(qλ(z1:N )||pθ(z1:N | x1:N )), (28)

where λ are the variational parameters for a family of approximations Q. To have a
concrete example in mind, you may once again take Q to be the family of Gaussians.

The ELBO provides a lower-bound on pθ(x1:N ) and the gap in this bound is given by
KL(qλ(z1:N )||pθ(z1:N | x1:N )). This suggests a joint optimization problem over θ and the
variational parameters λ,

θ∗, λ∗ = argmaxθ,λ ELBO(θ, λ)

= argmaxθ,λ [pθ(x1:N )− KL(qλ(z1:N )||pθ(z1:N | x1:N ))] . (29)

If Q is rich enough, then we can drive KL(qλ(z1:N )||pθ(z1:N | x1:N )) to 0 and optimize the
true objective function. However, Q is often restricted and so the KL can usually not
be driven to 0, meaning minimize an approximation of pθ(x1:N ) rather than pθ(x1:N )
itself.

Conditional on θ, each observation xn only depends on zn,

p(x1:N | z1:N ) =

N∏
n=1

p(xn | zn). (30)

10
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We will also assume that the priors on z1:N factorizes, p(z1:N ) =
∏
n p(zn).

If the likelihoods p(xn | zn) follow the same distribution and similarly for the priors
p(zn), then the posterior p(zn | xn) can be expressed as a function of xn and zn,

p(zn | xn) = g(zn, xn). (31)

This suggests that, instead of learning a variational parameter λn for each factor q(zn),
we can instead amortize the procedure and learn a function f such that,

λn = f(xn). (32)

IfQ is the family of Gaussian, then f maps xn to a posterior mean and covariance ma-
trix. Once again we can approximate f with a neural network. This neural network is
often termed the encoder, because it maps the original image xn to a low-dimensional
representation zn.

There are several arguments for using amortized VI:

• The number of variational parameters is determined by the size of the encoder
neural network, rather than by the dimension of the observations.

• Information is pooled across observations, empirically leading to faster opti-
mization.

• The learned function, f̂ can be used to compress images in a validation set.

On the other hand, amortization can also have drawbacks:

• Amortization restricts the family Q of approximation—this is most obvious if we
use a simple encoder, for example a linear function—and the solution can be
suboptimal relative to standard VI. This sub-optimality is known as the amorti-
zation gap.

Amortized VI can also be used to do full Bayesian inference on the joint posterior
p(θ, z1:N | x1:N ) [e.g Margossian and Blei, 2024].

6.6 Variational inference beyond the Gaussian approximation

Many VI algorithms rely on a family Q of approximations which is not Gaussian.
In many applications, it is common to construct a bespoke family Q to match the
characteristics of the target p [e.g., Blei et al., 2003]. But this approach requires a
large algorithmic effort from the user and works poorly in Bayesian workflow, since
every revision of the model requires a revision of the variational family Q.

The ideal of black box VI is to use a family which works well across a broad range
of models and does not require bespoke manipulations from the user. The Gaussian
approximation is a reasonable starting point:

• Many Bayesian models have Gaussian components in the likelihood or prior.

• Under certain conditions, the Bernstein-von Mises theorem tells us that as we
accumulate data the posterior becomes more Gaussian.

11
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• The resulting variational optimization problem tends to be manageable, espe-
cially if the approximation is factorized.

But in many applications, we can improve on the Gaussian approximation. Here I’ll
very briefly review some strategies:

• Pathfinder VI [Zhang et al., 2022]. Pathfinder offers a slight twist on tradi-
tional VI, but in end effect, it produces a normal approximation.

The multi-pathfinder runs Pathfinder VI I times in parallel and generates I nor-
mal approximations. If p is far from Gaussian, different runs of the optimizer
produce different solutions. Combining these solutions produces a mixture of
normals and the relative weight of each mixture component is determined by an
importance sampling scheme.

• Normalizing flow. Normalizing flows are defined by an initial draw ζ ∼ q0 which
is then transformed via a learned function z = f(ζ). Usually, we’ll pick q0 to be
a simple distributon, for example a Gaussian. This simple distribution is then
transformed into a more sophisticated distribution using f .

The final approximation to p is,

q(z) = q(f(ζ))
∣∣Jf−1

∣∣ , (33)

where Jf−1 is the Jacobian of f−1,

Jf−1,ij =
∂

∂zj
f−1(ζ)i. (34)

We can elect f to be a highly flexible function, once again using a neural network.
However, in order to evaluate log q(z) when computing the ELBO and its gradient,
we must be able to evaluate the Jacobian determinant

∣∣Jf−1

∣∣. This imposes
constraints on the neural network architecture. In particular, the final function
f needs to be invertible.

Naturally, the more “complicated” f is, the more difficult the variational opti-
mization problem—both in terms of computational cost per step and number of
steps required to find a minima (in fact, once neural networks are involved, we
can expect the objective function to be non-convex and have many local mini-
mas).
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