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DRAFT

5 Bayesian Modeling and Markov chain Monte Carlo
on Modern Hardware

Much of the recent progress in compute power has come from parallel-processing, in particular the
development of graphical processing units (GPUs). GPUs were originally designed for graphical
rendering and then developed for numerical computation, specifically the matrix operations that
underlie neural networks.

In this section, we'll examine the ways in which Bayesian modeling and MCMC can exploit GPUs
and more generally parallel accelerators. We'll see that popular MCMC workflows often fail to
leverage parallelization and that certain implementations, while remarkably effective on classic
hardware such as central processing units (CPUs), are not mindful of the engineering constraints
imposed by GPUs.

Perhaps most important takeaway from this lesson is to realize that parallel accelerators do
not offer “arbitrary parallelization”, i.e. the ability to perform completely distinct operations on
different cores. Rather, accelerators are most effective when using Single Instruction Multiple
Data (SIMD) instructions, wherein each core performs the same operation but on a different
“data” or input.

5.1 Parallelizing the model

Let's examine some examples of Bayesian models, i.e. functions which return (log) joint densities,
and see how compatible these functions are with parallelization and SIMD instructions.

Logistic regression. Consider a model with N observations (x,, y,), where x, € RP and
yn€{0,1}:

Ba ~ normal(0, 1)

yn ~ Beroulli(a(B" x,)), (1)
where o is the logistic function. There are several opportunities for parallelization, when

evaluating log p(y, B; x»). Due to the marginal independence of the B4's and the conditional
independence of the y’s,

D N
log p(y, B; xn) = Z log Normal(By4;0,1) + Z log Bernoulli(y,: B x»). (2)
d=1 n=1

The terms inside each sum can be parallelized and calculated using SIMD instructions.
On the other hand, we cannot parallelize across the sums with SIMD instructions, since
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different cores would need to perform different operations. Hence, each sum is parallelized
and performed sequentially.

Fortunately, we do not need to explicitly dictate how the parallelization happens on GPU,
provided we use specialized packages such as JAX or PyTorch.

Pharmacokinetic model. We now consider a more sophisticated example (see your home-
work assignment for additional details). In this example, we have observations y;.7 on a
patient, physiological parameters 8, and a parameter o for the observational model. The
generative model is,

~ p(9)
o ~ p(o)
¢ = f(6,t)
yt+ ~ logNormal(log ¢, o), (3)

where f is a function that returns the solution to a differential equation parameterized by
0 at time t.

Once again, there are opportunities for parallelization. If the prior p(8) factorizes into
identical factors with different inputs, the calculation of log p(6) can be parallelized with
SIMD instructions. Similarly, we can take advantage of the conditional independence of the
yt's when computing log p(y1.7 | c1.7, 0).

The function f requires solving a differential equation. Depending on how we solve the
differential equation, there may be some opportunities for parallelization. A numerical
integrator usually requires doing sequential operations and so is not immediately amiable to
parallelization (although some operation within the sequence may be).

Population pharmacokinetic model. An extension of the pharmacokinetic model considers
observations collected across multiple patients. This leads to a hierarchical or population
model, wherein each patient has their own individual parameters 8,, with a prior driven by
a population level parameters ¢.

¢ ~ p(d)
en ~ P(en | d))
o ~ p(o)
Cht = f(en: t)
ynt ~ logNormal(log cut, 0). (4)

In addition to the parallelization opportunities we identified previously, it also seems natural
to parallelize across patients.

This is straightforward to do if computing f involves the same operations for all patients,
as will be the case if we use:

— an analytical expression for f.

— a matrix exponential, if the ODE is linear.
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— a numerical integrator with a fixed step size.

On the other hand, if we use a numerical integrator with an adaptive step size, the number
of operations to compute f likely differs between patients. This is in fact what we can
expect from most standard numerical integrators (like the Runge-Kutta 4™ /5% order in
Stan).

In practice, population pharmacokinetic models are often fitted on a CPU cluster, with each
core handling one patient in a non-SIMD fashion. Stan is well equipped to handle this type
of parallelization, notably via the reduce_sum function.

Finding ways to fit population pharmacokinetic models on GPUs largely remains an open
question. Some ideas:

— Use a fixed step size for the ODE solver, with a carefully chosen step size using
information during the warmup.

— Use a surrogate model to solve the ODE, for example with a neural network.

Remark 1. /n an automatic differentiation framework, parallelization considerations for eval-
uating log p(8, y) naturally extend to computing the gradient V log p(6,y).

5.2 Parallelizing across chains

A general strategy to leverage access to multiple cores is to run Markov chains in parallel. Running
multiple chains has several benefits:

e [t increases the number of samples, which in turn reduces the variance of our Monte Carlo
estimators.

e |t is necessary to compute certain diagnostics, such as R.
e |t can lead to adaptation strategies which share information between multiple chains.
In a classical framework, it is common to run 4 to 8 chains on a CPU.

With a GPU, it is straightforward to run hundreds or even thousands of Markov chains in parallel,
especially with the help of packages such as TensorFlow Probability and BlackJax. (My
personal record is 16,000.)

5.2.1 The Many-Short-Chains Regime

The prospect of running many chains in parallel suggests a strategy whereby the variance of
Monte Carlo estimators is entirely handled by a large number of chains.

Suppose we run M independent Markov chains of length N and assume they are sufficiently
warmed up that the bias is negligible. Let f be the Monte Carlo estimator obtained by averaging

samples across all chains,
M
o 1
_ (mn)
f_l\/INE Ef(zm”>. (5)
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Then,

~ Varf
Varf < ;‘/Ir , (6)

and this upper-bound is attained when N = 1, that is each Markov chain contributes exactly
one sample. Interpreting the ESS as a ratio of variances, we can say that the number of chains
lower-bounds the ESS.

For many problems, it suffices to achieve an ESS of ~100 or perhaps a few hundreds. For models
of moderate dimension, it is well within a GPU'’s capacity to run 100 Markov chains in parallel.
In that case, retaining one sample per chain is enough to achieve our target variance.

This configuration, wherein the variance is almost entirely handled by the number of chains rather
than the length of the chain is the many-short-chains regime.

Of course, while it is possible to average out variance, we cannot average out bias. That is,
regardless of the number of chains, we still need to warmup each Markov chain. A question then
is: how quickly can we reduce the bias of our Monte Carlo estimator?

To build some intuition, let's consider the regime of geometric ergodicity where,
‘Ef (Z(N) | zo) —Ef‘ < b(z)AV, (7)

for some initial point zy and A € (0, 1). Integrating over the initial distribution 7o from which z
is drawn and using Jensen’s inequality,

‘Ef (z(N)) - Ef‘ < )E (Ef (z(N) | zo)) - Ef‘
< E ‘ <Ef (Z(N) | zo)> —Ef‘
= E(b(20))\". (8)

Hence, the squared bias decays at an exponential rate O(A\?N), provided we discard early samples
(otherwise, it only decreases at a quadratic rate).

By contrast, the variance decreases at a linear rate O(1/N), with a constant which is 1 if we
draw independent samples but which is otherwise larger. For N sufficiently large, we have that

ANV <1/N. (9)

In fact, for A < 0.841, the above inequality holds for any N > 1 and within 20 iterations, the
squared bias is already two orders of magnitude smaller than the variance. Hence, provided X\
does not approach 1, decreasing the squared bias is much cheaper than decreasing the variance.

Moreover, the many-short-chains strategy holds the promise of turning an algorithm whose
squared error decreases linearly with the length of the Markov chains to one whose error de-
ceases exponentially with the length of the warmup, at least in some regimes.

5.2.2 Diagnostics and performance metrics

The many-short-chains regime has implications on how we measure the performance of MCMC.



Lecture notes STAT 547

Many analysis of MCMC focus on the asymptotic variance. For example, the most commonly
reported empirical metric for the performance of an MCMC algorithm is the ESS/operation or
ESS/s. This makes sense if we're running one long chain, since the the bias is negligible by the
time we control the variance.

The many-short-chains regime flips the script: the variance is negligible (because we have many
chains) and so the bias becomes the computational bottleneck. This is an invitation to revise
how we analyze MCMC.

Example: R convergence diagnostics. Recall the R statistics (module 2),

. N—-1 B
R=y/— -1+ =, 1
N +W (10)

where B is the sample variance of the per chain Monte Carlo estimator,

- L3 () an
TM-14 N )

and W is the average within-chain sample variance,

TS e () ) w

A diagnostic for convergence is to check that Ris sufficiently small, for example, R <1.0L.

Unfortunately, in the many-short-chains regime, the per chain variance is never small and,
no matter how long the warmup phase, R remains large. This is true even if we achieved
a low bias with an adequately long warmup and a small variance with a large number of
chains.

~

We saw that as the number of chains increases and in particular as M — oo, B is a
consistent estimator of the per chain variance, which admits the following decomposition,

Varf,\(,m) = VarE (f,\(,m) | Zém)) +EVar (f,\(,m) | zém)> . (13)

~~

nonstationary persistent

The nonstationary variance decreases with a long warmup, as the Markov chains forget
their starting point. On the other hand, the persistent variance requires a long sampling
phase—a condition which is incompatible with the many-short-chains regime. Ideally, we
would want a direct measure of the nonstationary variance to diagnose convergence.

This can be achieved with a nesting scheme. Suppose we partition our Markov chains into
groups of chains or superchains. The chains within a superchain are initialized at the same
starting point and then run independently.

Adjusting our notation, we take K to be the number of superchains and M the number of
subchain within each superchain, for a total of KM chains. Then the superchain Monte

Carlo estimator is,
(k) (k
7 = /\//sz( ™). (14)
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We then compute the sample variance,
1 —(k = 2
B = o1 (R = Fom) (15)

As K — 0o, B, converges to,
VarFA(/,k,\), = VarE <f,\(4k,\), | Zé“) + EVar (f,\(/,k,\), | zék)>
~ 1 ~
= VarE (F7 | ) + —Evar (A7 1 ). (16)

where in the second line, | used the conditional independence of the Markov chains within
a superchain to show that (i) the super chain has the same expectation value as each
individual subchain and (ii) the superchain’s variance is reduced by a factor of 1/M.

Our nesting strategy allows us to reduce the persistent variance, while leaving the nonsta-
tionary variance intact. With additional work, the contribution of the persistent variance
can be exactly corrected for and a convergence diagnostic can be devised based on how
quickly the nonstationary variance decreases.

Remark 2. The behavior of the nonstationary variance reflects that of the squared
bias, which also does not change with the number of chains. Additional arguments can
be made to show that, under certain conditions, the nonstationary variance decreases
at a “comparable” rate as the squared bias. (This is ongoing research!)

Remark 3. With some additional adjustments, it is possible to compute l?n for chains
of length 1. This opens the possibility of “continuously” monitoring the nonstationary
variance at each iteration and developing an automatic stopping rule.

5.2.3 GPU-friendly MCMC

To leverage the parallelization capacities of GPUs, we need SIMD instructions. The first step is
to ensure that evaluation of the log density log 7(z) and its gradient V log m(z) can be done with
SIMD instructions (Section . Then, at each “step”, the GPU returns an array of gradients
(one for each Markov chain).

Unfortunately, sophisticated adaptation strategy may not be compatible with SIMD.

NUTS is not GPU-friendly. NUTS and its variants are not GPU-friendly. Indeed, at each
iteration, we need to construct orbits until the No-U-Turn termination criterion is met. Depending
on the current “location” zy of a Markov chain and the sampled momentum pg, the number of
leapfrog steps to compute a valid orbit will vary between chains.

For example, if we consider a pair of Markov chains, one which takes one leapfrog step and
another one two, the SIMD execution model runs both chains for two leapfrog steps and discards

6
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the second leapfrog from the second chain. Moreover, the number of leapfrog steps is always
driven by the largest orbit, yielding wasteful computation for most chains.

ChESS-HMC: a GPU friendly alternative. The SIMD constraint motivates new adaptive al-
gorithms, such as ChEES-HMC [Hoffman et al., 2021], which ensures that each iteration of the
Markov chain can be run in lock-step. This is simply done by fixing the trajectory length L.

Which L should we choose then? Rather than achieving the No-U-Turn criterion for each chain
at each iteration, we instead try to maximize the expected squared jump distance (ESJD),

ESJDf =E [||f(zr) — f(20)II?] - (17)

If we take f to be the identity, we obtain the expected squared distance from the initial point zy
to the final point zr. In other words, while we cannot hope to maximize the travelled distance
for each chain at each iteration, we can try to maximize that distance on average.

Other choices of f can be considered for the ESJD. For example, ChEES-HMC focuses on the
second moment of z, arguing that it is a more difficult quantity to estimate than the first moment.

Remark 4. When the target distribution has varying scales across dimensions (or somewhat
equivalently, if we're not able to construct a good mass matrix M), we can improve the
performance of HMC by jittering the trajectory length, i.e. sampling the number of steps
size uniformly from {1,2,---,L}.

Opportunities from running many chains. There are a number of MCMC strategies that
benefit from running many chains. For example, the mass matrix and step size adaptation can
pool information across many chains, meaning the adaptation per iteration is much faster. In
some cases, this can lead to faster bias decay.

Certain methods use Markov chains targeting different distributions to sample from a challenging
distribution. An example of this is tempering schemes.
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