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4 Hamiltonian Monte Carlo

We’ve discussed MCMC in a fairly general setting. In this section, we examine a specific subclass
of MCMC, called Hamiltonian Monte Carlo (HMC).

HMC has completely modernized MCMC in the 2010’s and it arguably remains the most popular
"off-the-shelf" inference algorithm for Bayesian analysis—although it certainly does not solve
every problem, nor is it the only good candidate you should consider.

Common HMC algorithms tend to yield good results for a broad range of high-dimensional targets
with a reasonable geometry, i.e. targets with finite curvature and a single mode (or sometimes
multiple modes that are not too disconnected). Certain classes of HMC can handle non-finite
curvature and, in general, algorithms designed for more intricate geometries can leverage HMC,
for example to do location exploration within a mode.

One motivation for using HMC is that it often scales better in dimension than random-walk
Metropolis algorithms, a fact that is often observed in practice. There is also a formal argument
for this. Consider a d-dimensional target distribution. Then, under somewhat idealized conditions,
the computational cost of HMC scales as O(d5/4), rather than the O(d2) cost characteristic of
random-walk algorithms.1

Interestingly, HMC itself is fairly old: it was introduced in a 1987 paper on quantum chromo-
dynamics and its original name was hybrid Monte Carlo [Duane et al., 1987]. Adoption of the
technique in the applied statistics community was slow because:

(i) the algorithm requires gradient calculations,

(ii) the algorithm is difficult to tune.

The method had some success in the 1990’s and 2000’s, thanks to Radford Neal’s pioneering
work on Bayesian neural networks. Around 2012, the creators of Stan popularized the method
by creating a probabilistic language with automated gradient calculation2 and a self-tuning HMC
algorithm, called the No-U-Turn sampler (NUTS, Hoffman and Gelman [2014]).

1Consider a d-dimensional target distribution p and suppose this target factorizes, with each factor equal,
p(z) =

∏d
i=1 p(zi). (Naturally, this scenario is simpler than what we encounter in practice, although it can be

generalized a bit.) Assume the Markov chain is already stationary. Then in this setting, the computational cost of
increasing the ESS by 1 with a random-walk Metropolis algorithm is O(d2), but only O(d5/4) for HMC. For further
discussion, see Neal [2011] and references therein.

2The efficient calculation of gradients is done using automatic differentiation, a broad class of techniques to
calculate derivatives of functions specified as computer programs. The reverse-mode of automatic differentiation is
known as backward propagation and underlies much of machine learning. See e.g., Baydin et al. [2018], Margossian
[2019] for an introduction on the topic.
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4.1 Ideal HMC

Suppose we want to construct an MCMC algorithm to sample from a target density π(z) defined
over Rd . We’ll assume that π is differentiable.

A standard3 HMC transition kernel proceeds as follows:

1. Start at the Markov chain’s current position z0 = z (i).

2. Draw an auxiliary “momentum” variable, from a normal with covariance matrix M,

ρ0 ∼ Normal(0,M). (1)

3. Simulate a trajectory over time T by solving Hamilton’s equations of motions:

d
dt
zt = −∇ρ logπ(ρt) = M−1ρt (2)

d
dt
ρt = ∇z logπ(zt), (3)

with initial conditions at time t0 = 0 given by (z0, ρ0).

4. Update the sate of the Markov chain, z (i+1) = zt .

Showing why this algorithm is effective takes a little bit of work.

Intuition. Hamilton’s equations can be interpreted as describing the movement of a particle
over time, with the position of the particle given by zt and its momentum by ρt . The particle is
subject to a potential, determined by − logπ(z), and this potential determines how the particle
accelerates.

To simplify things, take M = I (the identity matrix). Then, the change in position over time,
∂zt/∂t—or “velocity”—is given by the momentum ρt (eq. (2)). It turn, the change in momentum,
∂ρt/∂t—or “acceleration”—is given by ∇z logπ(z)(eq. (3)). That is, the particle accelerates
when it moves in a direction with a positive gradient and it decelerates when the gradient is
negative.

Tuning. A critical question is how large T should be: that is, for how long do we simulate a
Hamiltonian trajectory before we resample the momentum and start the next iteration of MCMC?

• If T is too small, then at each iteration, the Markov chain doesn’t travel far in the parameter
space and the MCMC samples are strongly autocorrelated.

• But increasing T beyond a certain threshold does not generate less correlated samples (e.g.
as the trajectory starts to backtrack) and leads to a large computational cost per iteration.

Demo. Comparison between HMC, Gibbs and Metropolis-Hastings on a high-dimensional and
ill-conditioned Gaussian target.

We’ll now show that HMC has the correct stationary distribution. To do so, we first review key
properties of Hamiltonian trajectories.

3The algorithm can be specified in a more general way but here we’ll focus on the standard implementation.
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We denote H the Hamiltonian of the system, defined as the negative log joint density over z and
ρ, that is,

H(zt , ρt) = − logπ(zt , ρt) = − logπ(zt)− logπ(ρt). (4)

With this notion, the equations of motion can be rewritten in their general form,

d
dt
zt =

∂H

∂ρ

d
dt
ρt = −

∂H

∂z
. (5)

Next, we denote ΦT : R2d → R2d , the function that maps (z0, ρ0) to (zt , ρt).

Lemma 1. (Properties of the Hamiltonian trajectory) The Hamiltonian trajectory ΦT verifies
the following properties.

• For any T , ΦT preserves the Hamiltonian,

H(zt , ρt) = H(z0, ρ0). (6)

Equivalently, the joint distribution over (z, ρ) is preserved.

• (Louiville’s theorem) The Hamiltonian map ΦT is volume preserving, that is the deter-
minant of the Jacobian ΦT is 1.

• The Hamiltonian map ΦT is time-reversible. That is, it admits an inverse Φ−1
T which

is obtained by negating the time derivative in eq. (2)–(3). Furthermore, we can obtain
the inverse map Φ−1

T by negating ρ, applying ΦT and negating ρ again.

Here, I’ll only provide a proof of the first item and the proof for the other properties is omitted.

Proof. (Conservation of the Hamiltonian) Taking the derivative of the Hamiltonian with respect
to time,

d
dt
H(zt , ρt) =

d∑
i=1

∂H

∂zi

dzi
dt

+
∂H

∂ρi

dρi
dt

=

d∑
i=1

∂H

∂zi

∂H

∂ρi
−
∂H

∂ρi

∂H

∂zi
= 0, (7)

where on the second line, we plugged in (5).

We now show that HMC has the correct stationary distribution.

Theorem 2. The transition kernel for HMC admits π(z) as its stationary distribution.

There are multiple ways to prove this result. The first way is to directly show that HMC has the
desired stationary distributions. The second way is to show reversibility (reversibility). While the
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second approach is less direct, it lays the foundation for showing that non-idealized versions of
HMC have the right stationary distribution.

Here, we’ll go over both proofs.

Proof. (Direct approach)

We will show that the joint distribution π(z, ρ) is stationary and from this it will follow that the
marginal distribution π(z) is also stationary.

First, we start with (z, ρ) ∼ π. The first step of HMC is to refresh the momentum, that is draw
ρ∗ ∼ π. By construction π(z, ρ) = π(z)π(ρ) and so z and ρ are independent. Hence, it suffices
that z and ρ∗ are marginally distributed according to π to have (z, ρ∗) be jointly distributed
according to π and so the first step of HMC leaves the distribution π invariant.

The next step is to simulate a Hamiltonian trajectory. For ease of notation, we denote x = (z, ρ∗).
We need to show that for any measurable set A over R2d , P (x ∈ A) = P (ΦT (x) ∈ A). Notice
that {ΦT (x) ∈ A} ⇐⇒ {x ∈ Φ−1

T (A)} and so we must show P (x ∈ A) = P (x ∈ Φ−1
T (A)).

Now,

P (x ∈ A) =

∫
A

π(x)dx. (8)

Let y = Φ−1
T (x). Doing a change of variable,∫

A

π(x)dx =

∫
Φ−1
T (A)

π(ΦT (y))|JΦ(y)|dy , (9)

where |Jφ(y)| is the determinant of the Jacobian of ΦT .

By Lemma 1, the Hamiltonian is conserved and so π(ΦT (y)) = π(y). Furthermore, |Jφ(y)| = 1.

Therefore, ∫
Φ−1
T (A)

π(ΦT (y))|JΦ(y)|dy =

∫
Φ−1
T (A)

π(y)dy . (10)

But the integral on the right-hand-side is exactly P (x ∈ Φ−1
T ), and so P (x ∈ A) = P (x ∈

Φ−1
T (A)), as desired.

Thus both steps of HMC preserve the distribution π(x) and thence the marginal distribution π(z).

Next, we consider a proof that shows reversibility.

Proof. (using reversibility)

As in the previous proof, we have that the first step of HMC (momentum refreshment) leaves π
invariant.

For the second step, we introduce a modification of the HMC transition kernel: namely, after
time T we flip the momentum, so that the final state of the transition is

(z ′, ρ′) = (zT ,−ρT ). (11)
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This does not actually induce any algorithmic change, since the momentum is refreshed at the
beginning of the next iteration and, ultimately, we’re only interested in the position variable z .
However the momentum flip ensures the algorithm maintains reversibility.

To see this, denote (z0, ρ0) the initial state of the trajectory. The Hamiltonian map induces a
conditional probability,

p(z, ρ | z0, ρ0) = δ(z = zT , ρ = −ρT ), (12)

where δ is the Dirac delta function (meaning all the probability mass concentrates at a single
point). Conversely, it follows from the reversibility of the Hamiltonian trajectory that,

p(z, ρ | z ′, ρ′) = δ(z = z0, ρ = −ρ0). (13)

Therefore,
P(z ′, ρ′ | z0, ρ0) = P(z0, ρ0 | z ′, ρ′). (14)

In words, if (z ′, ρ′) and (z, ρ) are each other’s “reciprocal” on a Hamiltonian trajectory of length
T , meaning (z ′ = zT , ρ

′ = −ρT ) and (z = z0, ρ = ρ0), then the probability on either side is 1,
else it is 0.

Next, recall that the Hamiltonian is conserved and so H(zT , ρT ) = H(z0, ρ0). Furthermore,
H(z, ρ) = − logπ(z, ρ) = − logπ(z)− logπ(ρ). Since π(ρ) is a symmetric distribution, π(−ρ) =

π(ρ). Therefore H(z ′, ρ′) = H(zT , ρT ) = H(z0, ρ0) and moreover,

π(z ′, ρ′) = π(z0, ρ0). (15)

Combining equations (14) and (15), we have

π(z0, ρ0)P(z ′, ρ′ | z0, ρ0) = π(z ′, ρ′)P(z0, ρ0 | z ′, ρ′), (16)

which is reversibility. Thus, the Hamiltonian map leaves π invariant, which completes the proof.

4.2 Discretized HMC

In practice, we cannot solve Hamilton’s equations of motion exactly and so we resort to a nu-
merical integrator. The most elementary integrator for solving differential equations is Euler’s
method, which uses a tangent approximations.

Specifically, at each iteration of Euler’s method, we increment (z, ρ) by a step ε in the direction
of the tangent (dz/dt, dρ/dt). If integrating from 0 to T , we repeat this process for L steps,
such that Lε = T . That is, we compute a discretized trajectory over {0, ε, 2ε, · · · , Lε}.

(Euler’s method)
1: for i in {1, · · · , L} do
2: ρ(t + ε)← ρt + ε∇ logπ(zt)

3: z(t + ε)← zt + εM−1ρt
4: end for

In practice, Euler’s method works poorly and accumulates a large error as L increases.
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(Leapfrog integrator)
for i in {1, · · · , L} do

ρt+ε/2 ← ρt + ε
2∇ logπ(zt)

zt+ε ← zt + εM−1ρt+ε/2

ρt+ε ← ρt+ε/2 + ε
2∇ logπ(zt+ε)

end for

A simple but surprisingly effective modification leads to the leapfrog integrator, which is what is
used in practice to run HMC.

Question: How many gradient evaluations per step does the leapfrog integrator require?

Tuning problem. The leapfrog integrator requires choosing a step size ε. If ε is too large, then
we do not simulate accurate Hamiltonian trajectories. On the other hand, a small ε means we
require more steps (i.e. a larger L) in order to perform integration over [0, T ].

One way to verify the accuracy of the leapfrog integrator is to check that the Hamiltonian
H(zt , ρt) is indeed conserved over time. But even for an adequate ε, the error remains non-zero,
which invalidates our argument that the Hamiltonian map verifies reversibility.

Metropolis adjustment. To ensure that the discretized HMC verifies reversibility, we can perform
a Metropolis correction. Starting at a state (z, ρ), we obtain a new state (zt , ρt) by simulating
the Hamiltonian for time T . We then generate a proposal,

(z∗, ρ∗) = (zt ,−ρt). (17)

Notice the sign change in ρ! We then accept the proposal with probability,

α = min
(

1, e−H(z∗,ρ∗)+H(z,ρ)
)
. (18)

Computing the exponentiated difference in the Hamiltonian is equivalent to evaluating a ratio of
the densities, π(z∗, ρ∗)/π(z, ρ), usually seen in the Metropolis acceptance rule.

In practice, we can ignore the sign flip in ρ. Since ρ is distributed according to a normal centered
at 0, ρt and −ρt have the same density. In other words, flipping the momentum does not change
the Hamiltonian. Furthermore, the new state ρ∗ can be ignored because the first step of HMC
is to refresh the momentum. Still, the sign flip is a useful theoretical tool which lets us prove
reversibility.

Other strategies. There exist other strategies to correct the numerical error introduce by the
leapfrog integrator. For example:

• Multinomial sampling: draw a sample from the entire discrete trajectory with the prob-
ability of drawing any sample weighted by exp(−H(zt , ρt)). This can be effective if the
integration error at (zT , ρT ) is large, even though it is acceptable along other points on the
trajectory.

• Unadjusted sampling: In some cases, the error introduced by the leapfrog integrator is
sufficiently small that the correction is ineffective and it is better to accept aggressively.
This leads to unadjusted samplers.
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4.3 Adaptive Hamiltonian Monte Carlo

There are three tuning parameters in HMC: the step size ε of the leapfrog integrator, the number
L of leapfrog steps (with the trajectory length given by T = Lε), and the mass matrix M.

4.3.1 Adaptively setting the path length L

We start by assuming ε is fixed and to simplify the notation, we take M = I.

No-U Turn criterion. Conceptually, large steps in the state space reduce the autocorrelation
between samples in the Markov chain and, at stationarity, leads to a larger ESS per iteration.
Therefore, running a Hamiltonian trajectory for a longer time is useful in so far as it increases the
distance from the initial point. Once the trajectory starts backtracking, the benefits of running a
longer trajectory decreases and we get less out of the computational work we do to simulate the
Hamiltonian trajectory.

This reasoning motivates the No-U Turn criterion, whereby we monitor whether increasing the
trajectory length T increases the distance from the initial point. This idea is at the heart of the
No-U Turn Sampler (NUTS) which underlies the MCMC algorithm in Stan, PyMC and other
probabilistic languages.

Fortunately, there is a straightforward way to monitor whether a longer trajectory would increase
the distance from the starting point. Let z0 be the initial position and zt the current position.
Then,

d
dt
||z0 − zt ||2 =

d
dt

(z0 − zt)T (z0 − zt) = 2(zt − z0)T ρt . (19)

A natural idea then would be to simulate a Hamiltonian trajectory until (zt−z0)T ρt < 0, at which
point we stop in order to not backtrack closer to our starting point.

Reversibility. Unfortunately, the map that simulates a Hamiltonian trajectory with a dynamic
trajectory length is not time-reversible (Figure 1) and as a result, we cannot guarantee that the
resulting MCMC algorithm is reversible and has the right stationary distribution.

A more sophisticated scheme can address this problem. To make the notation more compact,
let x = (z, ρ). The key idea is to stochastically generate a trajectory or orbit I from a starting
point x0, such that

P(I | x0) = P(I | xt), (20)

for any xt ∈ I. In words, the probability of generating a particular orbit I is the same no matter
which point in the orbit we start from.

Once this orbit is constructed, we set the new point x ′ in our Markov chain to a random point
from the orbit, for example using a multinomial distribution,

P(x ′ = xt | xt ∈ I) ∝ exp(−H(zt , ρt)) ∝ π(zt , ρt) =
π(xt)∑
t ′∈I π(xt ′)

. (21)
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z−3

z−2

z−1

z0

z1

z2

Figure 1: Example of a (discrete) Hamiltonian trajectory. If starting at point z0, the algorithm
would simulate a trajectory forward in time all the way to z2, where a U-Turn is detected. On
the other hand, starting a trajectory from z2 (with flipped momentum) may not lead back to z0

since a U-turn may only occur later, for example at z−3.

We can explicitly check that this scheme verifies reversibility,

π(x)p(x ′ | x) = π(x)P(I | x)P(x ′ | I)

= π(x)P(I | x)
π(x ′)∑
t∈I π(xt)

= π(x ′)P(I | x ′)
π(x)∑
t∈I π(xt)

= π(x ′)P(I | x ′)P(x | I)

= π(x ′)p(x | x ′). (22)

Of course, this begs the question of how do we construct an orbit which verifies eq. (20)? First,
it should be clear that any valid orbit must expand the Hamiltonian trajectory from a starting
point z0 both forward and backward in time.

Additive expansion. A natural if naive way to construct an orbit is with an additive expansion.

At each iteration of the expansion, we expand the trajectory forward or backward in time by one
leapfrog step. The probability of choosing either direction in time is 1/2. We then stop expanding
the trajectory, when a termination criterion based on the No-U-Turn condition is met.

Specifically, each time a new point zt is added, we check whether it induces a U-Turn with any
other existing point in the trajectory. Since we can evolve forward and backward in time, the
U-Turn condition is checked at both extremities of each subtrajectory,

(z+ − z−)T ρ+ < 0 AND (z− − z+)T ρ− < 0. (23)

Unfortunately, the additive expansion can be quite expansive for high-dimensional models, because
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(i) each extension of the orbit requires us to check the U-Turn condition against all points on
the trajectory.

(ii) we need to store every state (zt , ρt), which is memory intensive.

Efficient NUTS. Practical implementation of NUTS rely on a more sophisticated expansion,
which I’ll only briefly review here. For more details, you may consult Betancourt [2017, Appendix
A] and Hoffman and Gelman [2014].

Here’s a summary of the strategy used in Stan:

• Starting from an initial point z0, we randomly pick a direction: backward or forward in time.
When then compute one leapfrog step in the chosen direction.

• We repeat this process, but at each step, we double the length of the simulated sub-
trajectory. For example, the growing trajectory may look as follows:

(1) forward=1, orbit: {x0, x1}.

(2) forward=1, orbit: {x0, x1, x2, x3}

(3) forward=0, orbit: {x−4, x−3, x−2, x−1, x0, x1, x2, x3},

where at each step the new sub-trajectory is colored in orange. This construction admits a
representation as a binary tree.

• At each step, we check for U-turns within the new sub-trajectory and eliminate points which
verify the termination criterion in eq. (23). We then sample a candidate (zt , ρt) from the
new sub-trajectory, assign a probability weight (which accounts for H(zt ′ , ρt ′) for all points
in the sub-trajectory), and only save that particular point.

• Once we’ve constructed I, we sample from the candidate sample retained from each sub-
trajectory using a multinomial distribution. The weight of each sub-trajectory candidate
can be chosen to match the distribution in eq. (21). Alternatively, we can favor newer
trajectories in order to increase the distance from the starting point z0. This approach is
termed Biased Progressive Sampling.

4.3.2 Adaptively setting the step size ε

The step size ε must be chosen to ensure that the leapfrog integrator is both sufficiently accurate
and efficient. Ultimately, this balance ideally results in a Monte Carlo estimator that achieves a
target accuracy as quickly as possible.

Step size in Metropolis algorithms. In random-walk Metropolis, we need to tune the size of
the random step taken at each iteration and we must navigate the following trade-off: A small
step leads to a higher acceptance probability but more correlated samples. Conversely, a large
step leads to a lower acceptance probability but less correlated samples. Under certain conditions,
it can be shown that a step size with an average acceptance probability of α = 0.234... achieves
an optimal ESS/per iteration [Roberts et al., 1997].
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Likewise, adaptive HMC targets the acceptance probability α of the Metropolis step in eq. (18).
This acceptance probability is driven by fluctuations in the Hamiltonian H(zt , ρt). In the limit
ε→ 0, the leapfrog integrator simulates exact Hamiltonian trajectories and α→ 1.

Step size adaptation as stochastic optimization. The problem of adapting ε can be framed
as a stochastic optimization problem. To see this, we first define the expected acceptance,

h(ε) = lim
N→∞

1

N

N∑
n=1

E(αn | ε), (24)

where αn is the acceptance probability at the nth sampling iteration. Then our goal is to drive,

h(ε)→ δ, (25)

for some target acceptance probability δ. For example, Stan’s default is δ = 0.8. But the
optimal δ can vary largely depending on the problem. The default is a battle-tested heuristic but
it may be necessary to adjust δ after a first attempt at running MCMC. In practice, h(ε) cannot
be evaluated exactly, rather it is approximated by Monte Carlo using αn’s computed as we run
MCMC.

The above task is equivalent to a stochastic optimization problem where our goal is to drive the
gradient of an objective function—in this case h(ε)−δ—to 0 and where this gradient can only be
evaluated stochastically. This means stochastic optimization algorithms can be used to update ε.
A common choice for HMC is dual averaging.

Strictly speaking, NUTS does not use an accept/reject Metropolis step. Instead, αn is computed
by averaging hypothetical acceptance probabilities over the final sub-trajectory computed when
constructing the orbit I.

Freezing adaptation. One final and important caveat is that step size adaptation can alter
the stationary distribution. Therefore, it is common practice to only do adaptation during the
warmup and freeze adaptation (meaning ε no longer changes) during the sampling phase.

Certain algorithms, such as delayed-rejection HMC, try to adaptively find an optimal ε at each
MCMC iteration, including during the sampling phase. But just as with adaptive trajectory
lengths, such algorithms required careful constructions to ensure reversibility.

4.3.3 Adapting the mass matrix

The last tuning parameter to consider is the mass matrix M. In practice, we focus on the inverse-
mass matrix, M−1, since this is the quantity that appears in the leapfrog integrator. Specifically,
the relevant step is,

zt+ε ← zt + εM−1ρt+ε/2. (26)

Let’s first consider a diagonal mass matrix. Then, from eq. (26), we can interpret M−1 as a
rescaling of the step size ε along each dimension.

Such a rescaling can make sense when the distribution has wildly different scales along each
dimension. If we fix the mass matrix to I, then ε must typically be small enough to accommodate
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the dimension with the smallest scale and the integrator can be wildly inefficient along dimensions
with a larger scale, where a less granular discretization of the Hamiltonian trajectory may be
required.

With this conceptual motivation in mind, Stan uses the inverse sample variance based on samples
collected during the warmup phase,

M−1
i i =

1

v̂ar(zi)
. (27)

(As with step size, the mass matrix adaptation is frozen after the warmup phase.) That said,
finding an optimal adaptation strategy for the mass matrix remains an open question.

Sometimes, the direction along which ε needs to be rescaled does not correspond to a direction
along one particular dimension. Think for instance of a distribution with strongly correlated
variables. In that case, we may use the a non-diagonal mass matrix and set it to the sample
covariance matrix.

But this choice can be costly for high-dimensional targets. Indeed, the matrix-vector multiplication
in eq. (26) costs O(d2) for a dense matrix. By contrast, with a diagonal mass matrix, the cost
of this operation reduces to O(d). Hence, the benefits of using a dense mass matrix must justify
the more expensive leapfrog step. Sometimes, a compromised can be struck by using a mass
matrix structured as a diagonal matrix + a low-rank matrix.

For some targets, the correct mass matrix depends on where in the target space we are simulating
a Hamiltonian trajectory. (The most notorious example of this may well be Neal’s funnel, which
arises in hierarchical models.) In this case, the mass matrix can be set locally. One choice is to
use the curvature of the target distribution,

C(z) = −∇2 logπ(z). (28)

For justification for this choice, see e.g., Girolami and Calderhead [2011]. Unfortunately, this
approach tends to be costly, notably through the requirement to compute and store higher-order
derivatives of logπ(z).

Notice that if the target is Gaussian, then C(z) = Σ−1, which resonates with the heuristic of
using the covariance matrix to set the mass matrix.
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