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3 Prediction and model comparison

Even if we trust the inference, we need to check whether the fitted model “works.”

Question: what does it mean for a fitted model to work?

• Accurate predictions

• Accurate recommendations, decisions, ...

• Accurate inference on an unknown quantity of interest.

Remark: In ML, it is common to check a trained model without checking the inference. Is this a
good practice?

Most applications of a model imply we are making decent predictions. So let’s at least check that!
Let y1:N be our data and θ our model parameters. For simplicity, let’s assume that, conditional
on θ, the observations are independent, that is

p(y1:N | θ) =

N∏
n=1

p(yn | θ). (1)

Let’s suppose we want to make a prediction on a new observation, yN+1. There are several ways
to make this prediction:

• Point prediction. For a fixed θ̂, compute an estimator of ŷN+1 = E(ŷN+1 | θ̂).

• Distribution prediction. Instead of doing a point prediction, we may consider a distribution
of predictions, using the likelihood, p(ŷN+1 | θ̂).

• Posterior distribution of predictions. In a Bayesian setting, we want to examine the
posterior distribution of the predictions,

p(yN+1 | y1:N) =

∫
p(yN+1, θ | y1:N)dθ

=

∫
p(yN+1 | θ, y1:N)p(θ | y1:N)dθ

=

∫
p(yN+1 | θ)p(θ | y1:N)dθ, (2)

where we used conditional independence to get the last line.
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A natural way to study this posterior distribution is by drawing samples from p(yN+1 | y1:N). This
is easy to do once we have (approximate) samples from p(θ | y1:N). In particular, we can use a
two step process:

(i) θ(i) ∼ p(θ | y1:N)

(ii) y (i)N+1 ∼ p(yN+1 | θ(i)).

In Stan, we already know how to do (i). It remains to do (ii). This can be done in post-process
or using the generated quantities block.

3.1 Posterior predictive check

(Sometimes aptly called posterior retrodictive checks.1)

As a first step, we’re going to replicate the training data. That is, we’re going to sample ỹ1:N
and see how closely the model’s simulation match the observations we used to train the model.

Coding demo. Posterior predictions for the SIR model with a Poisson likelihood.

Informally, we want to check that the simulated data captures all the meaningful characteristics in
the data. One way to do this is to plot the observations along with the simulations. In our disease
transmission example, we plot the posterior median and 90 % posterior interval of p(ỹ1:N | θ).

Some questions to ask:

• Does the posterior median capture the central tendency of the observations?

• Is the uncertainty well-calibrated? For example, do 90 % of the observations fall within the
90 % posterior interval? Is the model too confident? Not confident enough?

• Are there some problematic outliers that suggest our model is missing some important
mechanisms in the data generating process?

To illustrate how insightful these simple visual checks can be, we’re going to fit another model
to the same influenza data set. Namely an SIR model with a negative Binomial likelihood.

How do the two posterior predictive checks compare? Does a model better capture the charac-
teristics of the data?

3.2 Out-of-sample predictions

Reconstructing the observations used to train the model provides an important sanity check but
it only tells us so much about a model’s ability to make predictions.

A common practice is to split the data into a training and a validation set and see how well the
model predicts data it has not “seen”.

Question: How should we split the data into a training and a validation set?

1https://betanalpha.github.io/assets/case_studies/principled_bayesian_workflow.html
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3.3 Prediction score

Visual checks are not always convenient, let alone feasible. Usually we also report a quantitative
measure of how good the prediction is.

Example 1. (Continuous observation) Suppose we have a normal likelihood, with estimated
mean µ̂n and standard deviation σ̂n, indexed by n. Our best prediction is

ŷn = µ̂n. (3)

Then, we might report the squared prediction error,

Err = (yn − µ̂n)2 . (4)

This is a valid measure for the quality of our prediction but it doesn’t tell us anything about σ̂n
or how confident our model is in its prediction.

Instead, we can use the point-estimate log predictive density,

p-lpd = log p(yn | µ̂n, σ̂2n) (5)

= k − log σ̂n −
1

2σ̂2n
(yn − µ̂n)2 . (6)

Example 2. (Binary observation) Suppose we have a Bernoulli likelihood with estimated
parameter π̂n. Our best prediction is

ŷn = I(π̂n ≥ 0.5). (7)

The the prediction error is
Err = I(ŷn = yn). (8)

Again, this doesn’t really tell us whether the model is too confident or not. Here, the point-
estimate log predictive density is

p-lpd = log p(yn | π̂n) (9)

= yn log π̂n + (1− yn) log(1− π̂n). (10)

This is the cross-entropy loss function (derived from a probabilistic perspective)!

In a Bayesian setting, we consider the point-estimate log predictive density averaged over the
posterior distribution. This leads to the expected log predictive density,

elpd = log p(yN+1 | y1:N) = log

∫
p(yN+1 | θ)p(θ | y1:N)dθ. (11)

Question: Equipped with this notion, how should we compare our two disease transmission mod-
els?
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We need to agree on which test set to use. A common choice is to do cross-validation, where we
average over multiple test-sets. In leave-one-out cross-validation, we only exclude one observation
and train the model over all the other observations. Then we compute the elpd at each observation
and take the average,

elploo =
1

N
log p(yn | y−n). (12)

But this requires training the model N times, which is expensive...

Idea: We’re going to find a fast approximation of p(θ | y−n), based on p(θ | y1:N).

3.4 Importance sampling estimator

Importance sampling (IS) provides a general framework to do Monte Carlo estimation when we
have samples from a proposal distribution q(z), rather than our target distribution p(z).

The main relation we use is, ∫
f (z)p(z)dz =

∫
f (z)

p(z)

q(z)
q(z)dz. (13)

We denote w(z) = p(z)/q(z) the importance weights. With draws from q, we can in principle
construct an unbiased Monte Carlo estimator of Epf ,

f̂IS =
1

S

S∑
s=1

f
(
z (s)

)
w
(
z (s)

)
. (14)

The main challenge with importance sampling is that the importance weight may have an infinite
variance, if they are regions where q(z) is small and p(z) is large.

When computing the elpd at yn , p(θ | y1:N) is our proposal distribution and p(θ | y−n) our target
distribution. Then, applying Bayes’ rule and using the conditional independence of the likelihood,

w(θ) =
p(θ | y−n)

p(θ | y1:N)

∝
p(θ)p(y−n | θ)

p(θ) | p(y1:N | θ)

=

∏
j 6=n p(yj | θ)∏N
j=1 p(yj | θ)

=
1

p(yn | θ)
=: rn(θ). (15)

To be explicit, we denote c the missing constant, so that w(θ) = crn(θ). Then, we have the
following importance sampling estimator of log p(yn | y−n),

êlpdn =
1

S

S∑
s=1

crn

(
θ(s)
)

log p
(
yn | θ(s)

)
. (16)
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We need to find a way to deal with the unknown constant c . To do so, we consider the Monte
Carlo estimator,

1

S

S∑
s=1

cr
(
θ(s)
)

=
1

S

S∑
s=1

w
(
θ(s)
)
−→

∫
p(θ | y−n)

p(θ | y1:N)
p(θ | y1:N)dθ =

∫
p(θ | y−n)dθ = 1. (17)

This suggests a consistent estimator, sometimes called the self-normalized IS estimator,

êlpdn =
1

S

∑S
s=1 crn

(
θ(s)
)

log p
(
yn | θ(s)

)
1
S

∑S
s=1 crn

(
θ(s)
)

=

∑S
s=1 rn

(
θ(s)
)

log p
(
yn | θ(s)

)∑S
s=1 rn

(
θ(s)
) , (18)

where, bearing an abuse of notation, we denote êlpd the above estimator. Crucially, this estimator
does not depend on c and can be computed, provided we can evaluate the likelihood p(yn | θ).

3.5 Trunctated and Pareto-smooth IS estimator

Unfortunately, IS estimators as in eq. (18) can suffer from a large and even unbounded variance.
We’ll briefly review some strategies to control the variance of IS estimators.

One approach is to bound the ratios via a truncation rule,

r̃n = min(rn,
√
Sr̄). (19)

It can be shown that, provided rn has a finite first moment (E(|rn|) < ∞), plugging r̃n into
eq. (18) bounds the variance of êlpdn but introduces a bias that can be large.

A better strategy is to use Pareto-smoothing. This topic is a bit of a rabbit hole and here we’ll
only cover it at a high level. The main idea is to fit the tail distribution of rn,

p(rn | rn > u), (20)

for some threshold u. In practice, this distribution is often well approximated by a generalized
Pareto distribution,

p(y | µ, σ, k) =

{
1
σ

(
1 + k

(
y−µ
σ

))− 1
k
−1

, k 6= 0,
1
σ exp

(
y−µ
σ

)
, k = 0.

(21)

We fit the distribution to the tails of the IS weights using estimators k̂ , µ̂ and σ̂. A key charac-
teristic of the Pareto distribution is that it has k finite moments. That is,

E|xp|
{
<∞ , if p ≤ k
=∞ , if k > p.

(22)

Hence, the k̂ estimator can tell us whether the tail weights have a finite variance or not. Specif-
ically, the variance is finite if k̂ ≤ 0.5. Sometimes, we can get away with k̂ > 0.5, because even
if the tail weights have an unbounded variance, the êlpdn can still have a finite variance.2

2For this, we can invoke generalizations of the central limit theorem, with subefficient convergence rates.
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One heuristic is to check that k̂ < 0.7 for all êlpdn. If for a particular n, k̂ > 0.7 we may need to
refit the model with the nth data point excluded or come up with a different estimation strategy.

The Pareto smoothed Importance Sampling (PSIS) estimator can be computed using the R
package loo.

Coding demo: Use loo-cv to compare the SIR model with a Poisson likelihood and a negative
binomial likelihood.

For a more detailed discussion on the topic, see the excellent paper by Vehtari et al. [2017].
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