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2 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a broad class of algorithms used in many fields, including
Bayesian Statistics, Statistical Physics, Molecular Dynamics and more. It is often called the
workhorse of Bayesian Inference and it is the default inference engine in Stan and other statistical
software.

In this section, we review MCMC with the goal of understanding the algorithm’s control param-
eters and how to check that it produces sufficiently accurate answers.

For excellent references which go into more details, I recommend:

• “General state space Markov chains and MCMC algorithms” [Roberts and Rosenthal, 2004].
Reading this paper requires familiarity with measure theory—but don’t let that intimidate
you!

• “Probabilistic Inference Using Markov Chain Monte Carlo Methods” [Neal, 1993].

2.1 Monte Carlo

Monte Carlo methods estimate properties of a target distribution π using samples.

Example (estimate of the mean of a function f (z)):

f̂N =
1

N

N∑
n=1

f
(
z (n)

)
, z (1), z (2), · · · z (N) i id∼ π. (1)

Question: how good is this estimator?

Let’s examine the expected squared error:

E
[
(f̂N − Ef )2

]
=
(
Ef̂N − Ef

)2︸ ︷︷ ︸
squared bias

+ Varf̂N︸ ︷︷ ︸
variance

. (2)

If we draw exact samples from π(z), then f̂N is unbiased,

Ef̂N = Ef , (3)

and if the samples are independent, then the variance is

Varf̂N =
1

N
Varf . (4)

In addition, we have:
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(i) a strong law of large numbers,

P

(
lim
N→∞

f̂N = Ef
)

= 1. (5)

(ii) a central limit theorem, √
N(f̂N − Ef )√

Varf
d−→ normal(0, 1). (6)

Challenge: For many problems, we cannot draw exact samples from π. Instead we use MCMC to
draw approximate samples from π. But MCMC produces samples which are neither independent
nor identically distributed.

2.2 Asymptotic MCMC

It what follows, I’ll consider distributions over Z ⊆ Rd and I’ll assume that these distributions
admit a density in order to simplify a little bit the notation.

MCMC starts from an initial point z0 and then applies a transition kernel from z (i) to z (i+1),

Γ
(
z (i), z (i+1)

)
= p

(
z (i+1) | z (i)

)
. (7)

We denote Pn the distribution of the nth element of the Markov chain, obtained by sequentially
applying n times the transition kernel starting from z0. We denote pn the corresponding density.
Similarly, we denote Pπ the target distribution and π the corresponding density.

In general, we want to show that for any (measurable) set A and for a sufficiently large n,

Pn (z ∈ A) ≈ Pπ(z ∈ A). (8)

Question: How should we define “≈”?

We can start by checking convergence in distribution, that is

lim
n→∞

Pn (z ∈ A) = Pπ(z ∈ A). (9)

This can be shown for a broad class of transition kernels. The proof usually involves checking a
property called detailed balance or reversibility.

Definition 1. (reversibility) We say Γ is reversible with respect to π if

π(z)Γ(z, z ′) = π(z ′)Γ(z ′, z). (10)

Proposition 2. If Γ is reversible with respect to π, then π is a stationary distribution of the
Markov chain generated by Γ.
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Proof. We need to show that the distribution of a new state z ′ given a previous state z ∼ π is
also π, that is ∫

Γ(z, z ′)π(z)dz = π(z ′). (11)

Applying the assumption of reversibility,∫
Γ(z, z ′)π(z)dz =

∫
Γ(z ′, z)π(z ′)dz = π(z ′)

∫
Γ(z ′, z)dz = π(z ′), (12)

where in the last step, we recalled that Γ(z ′, z) = p(z | z ′) is a probability density and must
therefore integrate to 1.

Interpretation: Once the Markov chain “reaches” π, it stays there.

Remark: Reversibility is a sufficient condition for π to be a stationary distribution but not a
necessary one. What is an example of an MCMC algorithm which is not reversible but has the
right stationary distribution?

Example (Metropolis-Hastings).

Given z , generate a proposal z∗ from a proposal distribution q(z∗ | z). Then accept this
proposal with a probability,

α(z, z∗) = min
[

1,
π(z∗)q(z | z∗)
π(z)q(z∗ | z)

]
. (13)

That is, for u ∼ uniform(0, 1),

z ′ =

{
z∗, if u ≤ α(z, z∗)

z, otherwise.
(14)

Exercise: Show that the stationary distribution of a Markov chain using the Metropolis-
Hastings transition has stationary distribution π. (Hint: show that it is reversible with
respect to π.)

Once we establish that our Markov chain has the right stationary distribution, we need to make
sure that it asymptotically gets there. For this, we need to verify two conditions: (i) φ-irreducibility
and (ii) aperiodicity. The exact definitions of these terms requires measure theory, which is a bit
beyond this course. Instead, we’ll provide some intuition:

• φ-irreducibility: From any z , the Markov chain will eventually “explore” the entire space
and reach any measurable set.

• Aperiodicity: The chain will not oscillate in a regular pattern between different states.

Example (Periodic Markov chain with the right stationary distribution). Consider a
state space Z = {1, 2, 3} and let π be uniform over Z. Consider a Markov chain with

Γ(1, 2) = Γ(2, 3) = Γ(3, 1) = 1. (15)
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Then π is stationary. (Why?)
Intuitively, the chain is irreducible.
However, if z0 = 1, then p

(
z (n)

)
6= π for any n.

Equipped with these notions, we now have sufficient conditions to build a Markov chain which
asymptotically reaches π. Specifically, we have two results: (i) convergence in distribution, which
is a statement about the distribution of z (n) as n →∞; and (ii) a law of large numbers, which is
statement about the Monte Carlo estimator f̂N itself. For completeness, I’m providing the formal
measure-theoretical statement of this result.

Theorem 3. If a Markov chain on a state space with countably generated σ-algebra is φ-
irreducible, aperiodic, and has stationary distribution π, then for π-almost-everywhere z ∈ Z
and for any measurable set A,

lim
n→∞

P
(
z (n) ∈ A

)
= Pπ(z ∈ A). (16)

Furthermore, for f : Z → R with E(|f |) <∞, we have a strong law of large numbers,

P

(
lim
N→∞

f̂N = Ef
)

= 1. (17)

Question: How might you verify the conditions of Theorem 3 for the Metropolis-Hastings algo-
rithm? What conditions on the proposal distribution q do we need?

2.3 Pre-asymptotic MCMC

Theorem 3 is a remarkable result: under fairly weak conditions, we can construct a Markov chain
that has the right stationary distribution and will asymptotically get there. But this does not tell
us how our Markov chain behaves over a finite number of iterations. To answer this question, we
need to study two properties of the Markov chain:

(i) how quickly does Pn approach Pπ? This, as we will see, is a statement about the bias of
f̂N .

(ii) If the Markov chain is stationary, how quickly does the variance of f̂N decrease?

2.3.1 How quickly does Pn approach Pπ?

To tackle the question of convergence speed, it is common to bound a distance between Pn and
Pπ by a function of N, the number of iterations. There are many ways to compare distributions
and none of them seem to be perfect. Which way to use remains, in my view, a somewhat
open question (we’ll revisit this topic when talking about variational inference). In the MCMC
literature, it is common to bound the total variation distance.

Definition 4. The total variation distance between two probability distributions Pν1 and Pν2
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is:
||Pν1 − Pν2 || = supA|Pν1(z ∈ A)− Pν2(z ∈ A)|. (18)

In words, if we consider all possible measurable sets A and pick the one that “maximizes” (suprem-
izes?) the difference between Pν1 and Pν2 , how big is this difference?

The total variation distance can be written in a way that more clearly relates to our goal of
constructing Monte Carlo estimators.

Proposition 5. The total variation distance between two probability measures Pν1 and Pν2 ,
respectively with density ν1 and ν2, is, for a < b,

||Pν1 − Pν2 || =
1

b − a supf :Z→[a,b]
∣∣∣∣∫ f (z)ν1(z)dz −

∫
f (z)ν2(z)dz

∣∣∣∣ . (19)

Proof. Left as an exercise.

In words, if we consider all bounded functions f , the total variation distance provides an upper-
bound on how much the expectation value of f with respect to ν1 and ν2 can disagree. Applying
this to the setting of MCMC, we obtain,

1

b − a
∣∣Ef̂N − Ef ∣∣ ≤ ||Pn − Pπ||. (20)

This is a bound on the bias of our Monte Carlo estimator but only for bounded functions.

Another useful property of the total variation distance is that it provides bounds on the bias of
quantile estimates. For what follows, let’s take Z to be R since quantiles are defined for univariate
quantities. Recall that the αth quantile of measure ν1, aν1(α), is implicitly defined as

Pν1(z ≤ aν1(α)) = α. (21)

Proposition 6. Suppose ||ν1−ν2|| = ε and assume that the cumulative distribution functions
(CDFs) of ν1 and ν2 are strictly increasing. Then,

aν1(α− ε) ≤ aν2(α) ≤ aν1(α+ ε). (22)

Proof. Recall the CDF, Fν1 : Z → [0, 1], is,

Fν1(a) = Pν1(z ≤ a). (23)

Since we assume that Fν1 is strictly increasing, we have that Fν1 is invertible and so for α = Fν1(a),
we have that a = F−1ν1 (α).

Denote A = (−∞, a]. Then, from the bound provided by the total variation distance,

|Pν1(A)− Pν2(A)| ≤ ε, (24)
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or using a different notation,
|Fν1(a)− Fν2(a)| ≤ ε. (25)

By assumption, Fν2 is strictly increasing and therefore invertible. Pick a = aν2(α) = F−1ν2 (α).
Then, plugging this in,

|Fν1 ◦ F−1ν2 (α)− Fν2 ◦ F−1ν2 (α)| ≤ ε (26)

⇐⇒ |Fν1 ◦ F−1ν2 (α)− α| ≤ ε (27)

Then,
α− ε ≤ Fν1 ◦ F−1ν2 (α) ≤ α+ ε. (28)

Applying F−1ν1 on each side (and noting that F−1ν1 must also be strictly increasing),

F−1ν1 (α− ε) ≤ F−1ν2 (α) ≤ F−1ν1 (α+ ε), (29)

which is the wanted result.

Now that we have some motivation for bounding the total variation distance, we can try to un-
derstand how quickly this distance decreases. We’ll start with an elementary property that states
that applying a transition kernel must decrease the total variation distance.

Proposition 7. If Pπ is a stationary distribution for a Markov chain kernel, then for any
n ∈ N,

||Pn+1 − Pπ|| ≤ ||Pn − Pπ||. (30)

Proof. For any event A,

|Pn+1(z ∈ A)− Pπ(z ∈ A)| =

∣∣∣∣∫ P1(z ∈ A | z ′)pn(z ′)dz ′ −
∫
P1(z ∈ A | z ′)π(z ′)dz ′

∣∣∣∣ , (31)

where we used the fact that, by assumption, applying a transition kernel to z ′ ∼ π still generates
a sample z ∼ π.

Let f (z ′) = P1(z ∈ A | z ′) and notice f is a bounded function, specifically f : Z → [0, 1]. Then
eq. (32) can be rewritten as,

|Pn+1(z ∈ A)− Pπ(z ∈ A)| =

∣∣∣∣∫ f (z ′)pn(z ′)dz ′ −
∫
f (z ′)π(z ′)dz ′

∣∣∣∣ ≤ ||Pn − Pπ||, (32)

where the inequality follows from Proposition 5 with a = 0 and b = 1. Taking the supremum
with respect to A on both sides of eq. (32), we obtain the wanted inequality.

With a more detailed analysis, we can derive a bound on the total variation distance of the form,

||Pn − Pπ|| ≤ b(z0)h(N), (33)

where by convention h(0) = 1 and b(z0) is the initial bias |f (z0)− Ef |. Under stronger assump-
tions, it is possible to characterize h(N). One regime of particular interest arises when h is a
geometric function, h(N) = λN for λ ∈ (0, 1). This regime is called geometric ergodicity. In this
regime:
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(i) the bias of f
(
z (n)

)
decreases exponentially and so does the bias of f̂N if we discard early

samples.

Exercise: how quickly does the bias of f̂N decrease if we don’t discard early samples?

(ii) we have a central limit theorem for f̂N , which is the topic of the next section.

Proposition 8. When the state space Z is finite, then any irreducible and aperiodic Markov
chain with stationary distribution π is geometrically ergodic.

Not all Markov chains on discrete spaces are irreducible and aperiodic and furthermore, not all
irreducible and aperiodic Markov chains on continuous state spaces are geometrically ergodic.
Ensuring geometric ergodicity over continuous spaces requires additional technical requirements.

In general, it is difficult to calculate h and even then, bounds on the total variation distance tend
to be conservative, since they need to account for worst case scenarios, rather than focusing
on the particular functions we might be interested in. This will motivate us to look at empirical
measures of convergence which, while imperfect, can be deployed in practice.

2.3.2 Variance of MCMC at stationarity

A question of interest is how quickly does the variance of f̂N decrease if we start from the
stationary distribution? This idealized case approximates the behavior of Markov chains which
have been warmed up for a sufficiently long time and which are nearly stationary. In this ideal
setting, the Monte Carlo estimator is unbiased but we still need to handle its variance.

Here, a quantity of interest is the effective sample size (ESS), defined as follows,

ESS =
N

1 + 2
∑∞
t=1 ρ(t)

, (34)

where ρ(t) is the autocorrelation between two samples separated by t steps. Notice that if
ρ(t) = 0 for all t, ESS = N.

The ESS plays a key role in the MCMC central limit theorem.

Theorem 9. Consider the Monte Carlo estimator f̂N obtained from a geometrically ergodic
MCMC algorithm. Then

√
ESS(f̂N − Ef )√

Var(f )

d−→ normal(0, 1). (35)

This central limit theorem is almost identical to the one we have for independent samples (eq. (6)),
except that the rate of convergence is

√
ESS rather than

√
N. Moreover, for a large enough

sample, we have

f̂N
approx.∼ normal

(
Ef ,

Varf
ESS

)
. (36)
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This suggests another interpretation of the ESS for stationary Markov chains,

ESS ≈
Varf

Varf̂N
⇐⇒ Varf̂N ≈

Varf
ESS

, (37)

and one can once again check that for i.i.d samples, ESS = N. Eq. (37) drives home the point
that for stationary Markov chains and for large N, the ESS monitors the variance of f̂N , scaled
by the posterior variance.

Based on eq. (37), the ESS can further be interpreted as the number of independent samples we
would require to achieve the same expected squared error as our Monte Carlo estimator.

2.4 Practical diagnostics for MCMC

Remember that our goal is to control the expected squared error of the Monte Carlo estimator
f̂N . For this we resort to a warmup phase and discard early samples to reduce the bias. We then
run a sampling phase to control the variance. By default, Stan runs 1000 warmup iterations and
1000 sampling iterations.1

The bias and variance hint at two sources of error:

• The bias is due to the nonstationary initialization.

• The variance is due to the randomness in the MCMC (and is increased by the fact that the
samples tend to be autocorrelated).

A general strategy to check the influence of these two sources of error on f̂N is to run multiple
chains with distinct initializations and seeds, and make sure that they still produce results which
are in “good agreement” with one another.

They are multiple ways to measure agreement. First, we can perform visual checks using trace
plots and density plots (Figures 1 and 2).

Another way to check for agreement is to compute the sample variance of the Monte Carlo
estimator generated by individual chains. Moving forward, we denote with a superscript the chain
identity of each Monte Carlo estimator: for example, f̂ (m)N is the Monte Carlo estimator generated
by the mth chain, and,

f̄
(·)
N =

1

M

M∑
m=1

f̂
(m)
N , (38)

is the Monte Carlo estimator obtained by averaging across all chains. The sample variance of the
per chain Monte Carlo estimator is then

B̂ :=
1

M − 1

M∑
m=1

(
f̂
(m)
N − f̄ (·)N

)2
, (39)

and we can check that B̂ ≈ 0 as a measure of how well the Markov chains agree with one another.

1We will see that the warmup phase in Stan is not only used to reduce the bias of f̂N but also to tune the
MCMC algorithm so that it performs better during the sampling phase.
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Figure 1: Trace plots for MCMC. Value for each parameter across iterations. The shaded area
corresponds to the warmup phase (first 1000 iterations). Here, we want to check that all the
Markov chains have converged to the same “area” despite their distinct initialization and seed.
For this model, it only takes a few iterations for all the chains to converge in distribution. The
“fuzzy caterpillar” shape indicates that there is little autocorrelation between successive samples.
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Figure 2: Density plots for MCMC. Marginal density estimation using samples from the sampling
phase. Here too we can check that the marginal densities returned by different chains are in good
agreement.
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You might find this approach at best somewhat convincing. The sample variance lets us measure
the variance but can it actually tell us something about the bias?2 Intuitively, we expect that
Markov chains which have not converged to π will generate Monte Carlo estimators with higher
variance (why?).

We can formalize this intuition. Suppose we draw the Markov chain’s initial point z (k)0 from an
initial distribution P0. Then, applying the law of total variance,

Varf̂ (k)N = VarE
(
f̂
(k)
N | z (k)0

)
︸ ︷︷ ︸

nonstationary

+EVar
(
f̂
(k)
N | z (k)0

)
︸ ︷︷ ︸

persistent

. (40)

The variance term decomposes into a nonstationary and a persistent variance:

• The nonstationary variance measures how much the expectation value of f̂ (k)N varies with
the initial point z (k) and vanishes as the Markov chain “forgets” its starting point. Hence, it
is an indirect measure of the squared bias and how close to convergence the Markov chain
is. Formalizing this connection is a open research problem!

• The persistent variance eventually dominates the total variance and for stationary Markov
chains measures the asymptotic variance.3

For many problems, we care about the squared error of f̂N relative to the posterior variance and
so B̂ is scaled by a measure of the posterior variance. For each Markov chain, we compute a
sample variance, and then average across all chains,

Ŵ :=
1

M

M∑
m=1

1

N − 1

N∑
n=1

(
f
(
z (nk)

)
− f̂ (k)N

)2
. (41)

Then we examine the ratio B̂/Ŵ and check that it is close enough to 0 (meaning the variance
of the perchain Monte Carlo estimator is small relative to the estimated posterior variance).

For historical reasons, the quantity we typically measure is,

R̂ =

√
N − 1

N
+
B̂

Ŵ
, (42)

a quantity known as either the R̂ statistic, the potential scale reduction factor or the Gelman-
Rubin statistic, and whose initial motivation is a bit different than what I’m presenting here.
Nonetheless, R̂ is a 1-to-1 map with B̂/Ŵ .

A recent recommendation is to check that R̂ ≤ 1.01 [Vehtari et al., 2021]. This recommendation
is battle-tested and seems to work well, however finding a principled threshold for R̂ is an
open research question.

2This was a question I started working on during the final year of my PhD!
3One can also show that the stationary variance is inflated before the Markov chain convergences due to a

“drift” phenomenon: that is, as long as the Markov chain is not stationary, we’re likely averaging samples with a
different mean and this increases the variance.
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In addition to R̂, we also estimate the ESS as in eq. (34), based on estimates of the autocorrelation
ρt [Geyer, 1992]. Now, from eq. (37), we have that for a stationary Markov chain,

ESS ≈
Varf
VarfN

≈
Ŵ

B̂
. (43)

However, the above estimate tends to be less stable than the one obtained using autocorrelation
functions, and so it is useful to compute the ESS, once we establish that the Markov chains have
approximately converged to the stationary distribution with R̂.

Let’s return now to the table of output from fitting the SIR model.

variable mean median sd mad q5 q95 rhat ess_bulk
gamma 0.476 0.476 0.0110 0.0108 0.459 0.495 1.00 2362
beta 1.69 1.69 0.0149 0.0146 1.67 1.71 1.00 2794
R0 3.55 3.55 0.0786 0.0766 3.42 3.68 1.00 2962
T 2.10 2.10 0.0484 0.0474 2.02 2.18 1.00 2362

For all quantities of interest, we achieve R̂ ≤ 1.01 which suggests good convergence and we have
ESS> 2000 (labeled ess_bulk).

A somewhat open research question is to determine what is a useful ESS and more generally an
acceptable expected squared error. While this of course depends on the problem at hand, in my
experience, field practitioners do not themselves quite know how precise they need their Monte
Carlo estimators to be. But this is crucial to determine how long the Markov chains need to be!!
See Margossian and Gelman [2024] for further discussion.

For an example where the Markov chains do not converge and disagree, and where R̂ � 1, see
Chapter 29 of Bayesian Workflow.

Open discussion: Are Stan’s default control parameters (4 Markov chains with a warmup phase
of 1000 iterations and a sampling phase of 1000 iterations) optimal for doing Bayesian inference
on the SIR model?
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