STAT 547

STAT 547: Bayesian Workflow

Homework

Exercise 1 (pharmacokinetic model)

In this exercise, we will walk through the steps of Bayesian workflow to analyze clinical observations
from a single patient. Our goal is to understand how quickly a drug compound is absorbed and
cleared from the patient’s body. The patient orally receives a drug dose of 1200 mg at time
t = 0. We then measure the drug concentration (mg/L) in the patient’s blood over time (hours),
and obtain the following:

y = (8.79,5.80,12.79,15.52,9.98, 18.65, 13.21,13.91, 8.16, 4.81, 4.59, 2.23)

t = (0.083,0.167,0.25,0.5,0.75,1,1.5,2,3,4,6,8).
A standard pharmacokinetic model is the one-compartment model which describes how the drug
diffuses from the gut into the body before being cleared. This process is described by an ordinary
differential equation,

Uéut(t) = —kalgut (1),
CL

Uéent = kaUgut(t)—TtUperi(t), (1)
cen

with
e Ugut(t): drug mass in the gut (mg),

® Ucent(t): drug mass in the central compartment (mg), that is the blood and organs into
which the drug diffuses rapidly,

e k,: absorption rate constant (h™1),
e CL: elimination clearance from the central compartment (L / h),

® Vient: volume of the central compartment (L).

The patient receives the drug orally at time t = 0. This corresponds to a bolus dose in the gut
and so the initial conditions of the differential equations are tg,:(0) = 1200 and tcent(0) = 0.
The drug concentration is given by

c(t) = tcent(t)/Veent, (2)
and the measurement model is
y(t) ~logNormal(log c(t), o), (3)

with ¢ an unknown standard deviation parameter. Hence, the parameters of our model are
0 = (ka, CL, Veent, 0). Based on results on other patients, the following priors are available to us:

CL ~ logNormal(log 10, 0.25),
Veent ~ logNormal(log 35, 0.25),
ka ~ logNormal(log2.5,1)
o ~ normal™(0,1). (4)
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Figure 1: Pharmacokinetic model

Implement this model in Stan. (Tip: You can use a numerical integrator to solve the ODE
in eq[I} For faster inference, you can also resort to a matrix exponential or solve the ODE
by hand.)

Fit the model, check the quality of the inference (convergence, effective sample size), and
perform posterior predictive checks.

A more sophisticated pharmacokinetic model divides the body into a further compartment—
the peripheral compartment into which the drug diffuses slowly. The differential equation
for this model is

Uéut(t) = _kaUgut(t),
CL Q Q
u(/:ent(t) = kaUgut(t) — (V(:ent + Vcent> Ucent(t) + %Uperi(t)v
Q Q
Uperi(t) = mucent(t) - @Uperi(t)v (5)

which introduces two new parameters:

— Q: intercompartmental clearance (L/h)

— Vperi: volume of the peripheral compartment (L).

For these parameters, we may use the following priors:
Q ~ logNormal(log 15, 0.5); Vyeri ~ logNormal(log 105, 0.5). (6)

Fit this model and perform posterior predictive checks. Then, compare the two pharma-
cokinetic models using (approximate) Bayesian leave-one-out cross-validation.
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Exercise 2 (Hamiltonian Monte Carlo)

In this exercise, you will code an HMC algorithm and evaluate its performance with varying tuning
parameters.

(a) Write a function that runs “static’ HMC. At each iteration, your code should simulate a

(b)

(c)

(d)

(e)

Hamiltonian trajectory using a leapfrog integrator with L steps of size €. The proposal is
then accepted or rejected via a Metropolis procedure. Set the mass matrix to / (the identity
matrix). Your function should accept the following arguments:

— log_p: a function that returns the target's (unnormalized) log density.

— grad_log_p: a function that returns the gradient of the target's log density.

thetaO: a starting point for your Markov chain.

n_iter: the total number of MCMC iterations.
— eps: the step size of leapfrog integrator.

— L: the number of leapfrog steps per iteration.

The output of your function should be MCMC samples.

Test your function on a one-dimensional standard normal and check that the mean of the
MCMC samples approaches 0 and its variance approaches 1. (This should hold for any
reasonable choice of n_iter, eps, and L.)

Consider now as a target distribution a 5-dimensional multivariate normal. You may generate
a random covariance matrix or use the following one:

282 271 0.180 242 -1.87
271 735 —-4.02 -1.17v -1.05
> =10.180 —-4.02 885 1.64 3.81
242 —1.17 164 594 -3.95
—-187 —1.05 381 =395 6.40

Run your HMC algorithms on this target with ¢ = 0.05, L = 10 and n_iter= 1000.
Discard half of your samples as a warmup. Report the mean, median, standard deviation,
5th and 95t posterior quantiles. (You may use an existing package such as posterior in R
or Arviz in Python to do this.)

Report R and ESS. Show the trace plots and density plots. (Tip: to compute the conver-
gence diagnostics, you should run at least 4 independent Markov chains.)

Create a plot showing the squared error of your Monte Carlo estimate of the mean for the
first dimension as a function of the total length of the Markov chains. As before, discard
the first half of the samples as a warmup. Create the same plot, this time for a Monte
Carlo estimate of the second moment.

We will now experiment with different trajectory lengths. In their analysis of the Gaussian
case, Hoffman et al.|[2021] prescribe a trajectory length which verifies,

L¥e = L2.25max/mj. (7)
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(f)

Run your sampler with L =80 and L = L*. For each choice of L (including L = 10), report
R, ESS and ESS per gradient evaluation.

Rather than keeping L fixed, it is often beneficial to jitter L at each iteration. Specifically,
at each iter/a\tion we draw L uniformly from {1,2,---, Linax}. Run HMC using Lyax = L*
and report R and the ESS per gradient evaluation.

Exercise 3 (variational inference)

In this exercise, we will do a detailed analysis of the case where we use VI to approximate a
non-factorized Gaussian with a factorized Gaussian. As our variational objective, we chose the
reverse Kulback-Leibler divergence,

(a)
(b)

(<)

(d)

KL(qllp) = /(log q(z) —logp(z))q(z)dz. (8)

Show that KL(g||p) > 0 and KL(ql||p) =0 if and only if p = g.

Consider the case where p is a d-dimensional Gaussian with mean u and non-diagonal
covariance matrix X, and g is a d-dimensional Gaussian with mean v and diagonal covariance
matrix W. Show that,

1 1 1 _
KL(qllp) = K + E(U — ) (v —p)+ 5 log W] + Ezldzzl_[z Vi, 9)

where K is a constant which does not depend on the variational parameters v and W, and
log || denotes the log determinant of W.

Show that the variational parameters which minimize KL(q||p) are v = w and V;; =
/X i

We will now show that the variational approximation underestimates the variance of p.
There exists several ways to do this. I'll provide guidance on one approach, however you
should feel free to use another approach.

(i) Show that Var(z | z_;) = 1/[Z Y]/

(i) Hence, show that W;; < ¥;; and that this inequality must be strict for at least two
coordinates / if > is non-diagonal.
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