Bayesian Statistics: a practical introduction

Charles Margossian (Flatiron Institute)

"Bayesian inference is a flexible and powerful approach to modeling reality, making optimal predictions from data, and quantifying uncertainty in a coherent manner. Thanks to their versatility, Bayesian methods are now widely used in virtually all fields of science, engineering, and beyond."

"The theory of inverse probability is founded upon a principle which is so simple and so general that it may be applied in all cases and all hypotheses."

-Alexandre Bouchard-Côté, 2025

-Pierre-Simon Laplace, 1814

Goals: Understand what Bayesian analysis is.

Understand how Bayesian computation is done. Use the software **Stan** to fit and analyze models.

- - Vancouver 🗾
- Core Stan developer

Research Fellow at the Flatiron Institute, New York Professor of Statistics at the University of British Columbia,

Outline:

- Basics of Bayesian analysis
- Markov chain Monte Carlo
- Basics of Stan
- Application: Disease transmission model
- Model comparisons

Outline:

- Basics of Bayesian analysis
- Markov chain Monte Carlo
- Basics of Stan
- Application: Disease transmission model
- Model comparison

What is a (Bayesian) model? $p(y, \theta) = p(y \mid \theta) p(\theta)$

- with y observed, θ unknown model parameters.
- $p(y \mid \theta)$ is the *likelihood*. • For a fixed θ , defines a data generating process.

$p(\theta)$ is the prior.

- understanding of θ before we see the data.
- information from previous analysis, scientific theory, etc.
- regularization tool

RESEARCH ARTICLE

Estimation of SARS-CoV-2 mortality during the early stages of an epidemic: A modeling study in Hubei, China, and six regions in Europe

Anthony Hauser¹, Michel J. Counotte¹, Charles C. Margossian², Garyfallos Konstantinoudis ³, Nicola Low ¹, Christian L. Althaus¹, Julien Riou ^{1,4}*

observed y:

- reported cases
- hospital deaths

unobserved θ :

- transmission rate
- recovery rate
- $f(\theta)$: future cases...

likelihood $p(y \mid \theta)$: epidemiological model measurement model prior $p(\theta)$: constraints on interpretable parameters meta-analysis for asymptomatic rate

Bayesian inference

Given observations y, want to learn θ .

Proposition: learn a *posterior* distribution.

likelihood -

 $p(\theta \mid y) = \frac{p(y \mid \theta) \ p(\theta)}{p(y)}$

posterior

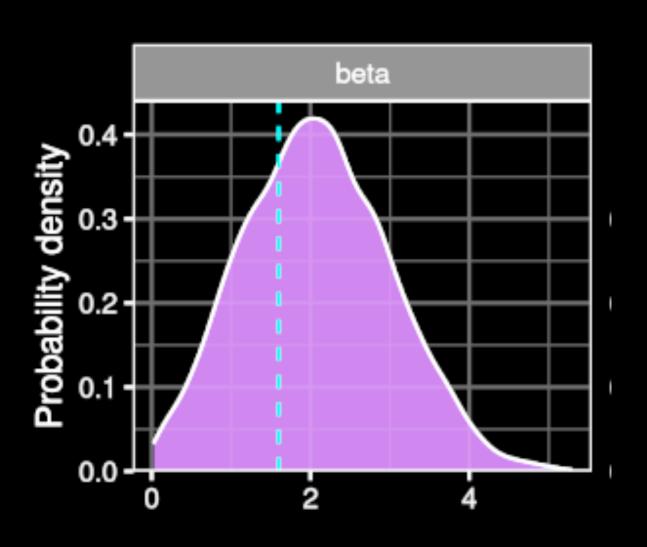
prior

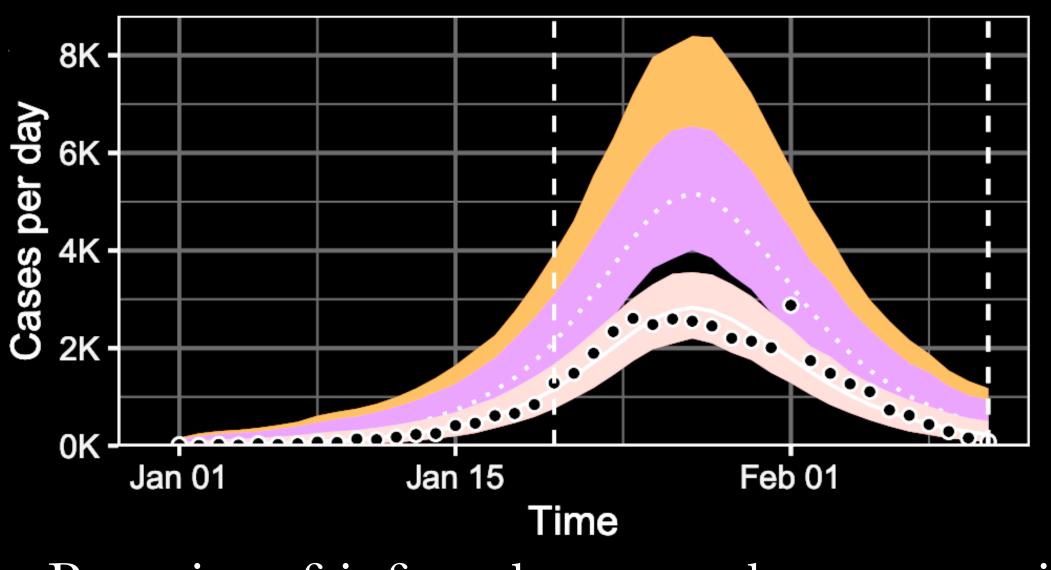
"evidence" (normalizing constant)

RESEARCH ARTICLE

Estimation of SARS-CoV-2 mortality during the early stages of an epidemic: A modeling study in Hubei, China, and six regions in Europe

Anthony Hauser¹, Michel J. Counotte¹, Charles C. Margossian², Garyfallos Konstantinoudis ³, Nicola Low ¹, Christian L. Althaus¹, Julien Riou ^{1,4}*





Posterior of infection rate β

Symptomatic cases

Posterior of infected cases and symptomatic cases

Example: normal-normal model $p(\theta) = \text{Normal}(\mu, \tau)$

 $p(y_i \mid \theta) = \text{Normal}(\theta, \sigma)$

Suppose we have N i.i.d observations, y_1, \dots, y_N .

 $p(\theta \mid y_{1:N}) = \text{Normal}\left(\frac{\mu/\tau^2 + N\bar{y}/\sigma^2}{1/\tau^2 + N/\sigma^2}, \frac{1}{1/\tau^2 + N/\sigma^2}\right)$

$p(\theta \mid y_{1:N}) = \text{Normal}\left(\frac{\mu/\tau^2 + N\bar{y}/\sigma^2}{1/\tau^2 + N/\sigma^2}, \frac{1}{1/\tau^2 + N/\sigma^2}\right)$

- Derive the above expression
- Show that $Var(\theta \mid y_{1:N}) \leq \tau$ and $Var(\theta \mid y_{1:N}) \leq \sigma^2/N$.
- What is the posterior as $N \to \infty$?

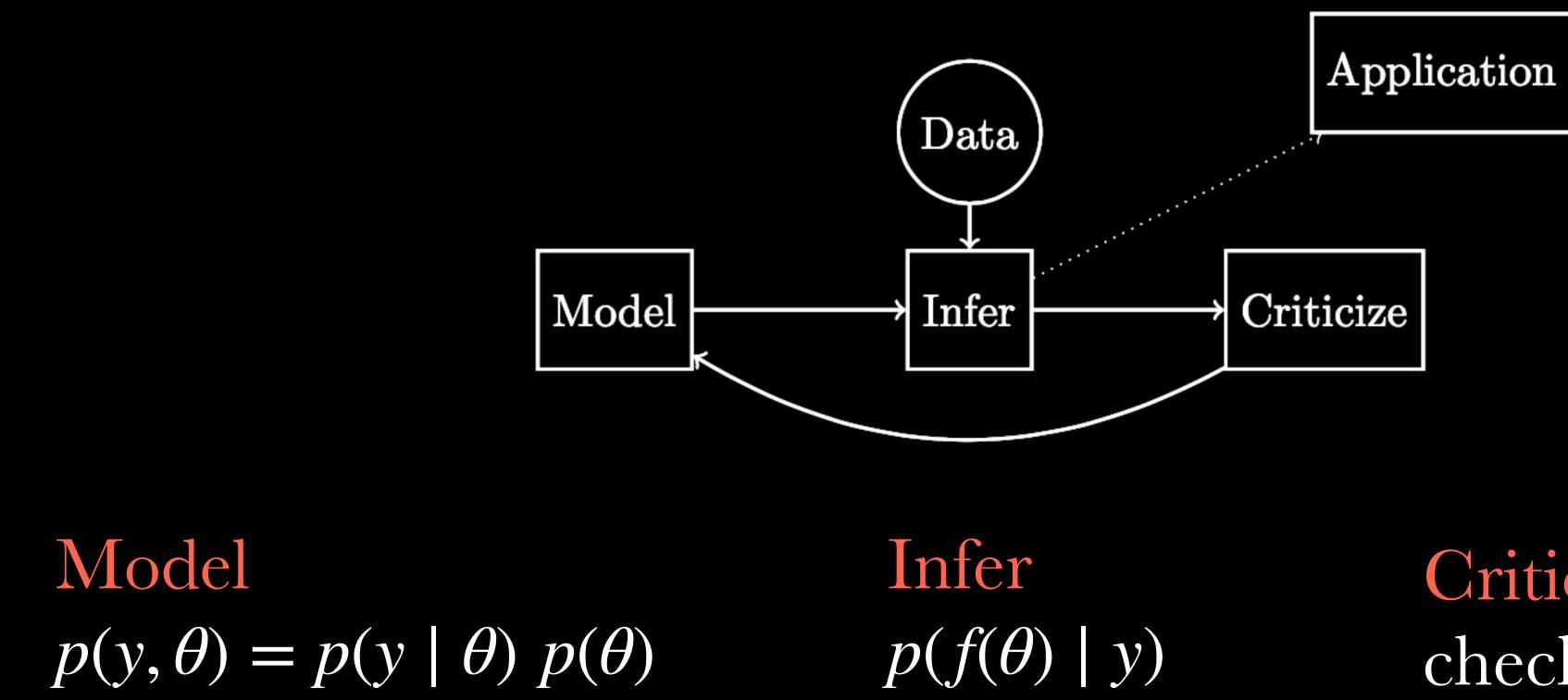
Bayesian learning

 $p(\theta \mid y_1, y_2) \propto p(y_1, y_2 \mid \theta) p(\theta)$

Suppose we have two independent observations, y_1 and y_2 .

 $\propto p(y_1 \mid \theta) p(y_2 \mid \theta) p(\theta)$ $\propto p(y_2 \mid \theta) p(\theta \mid y_1)$

Bayesian workflow



Criticize check inference, prediction, cross-validation, etc.

RESEARCH ARTICLE

Estimation of SARS-CoV-2 mortality during the early stages of an epidemic: A modeling study in Hubei, China, and six regions in Europe

Anthony Hauser¹, Michel J. Counotte¹, Charles C. Margossian², Garyfallos Konstantinoudis³, Nicola Low¹, Christian L. Althaus¹, Julien Riou^{1,4}*

The published model is the ~ 15 th iteration.

Grinsztajn et al. Bayesian workflow for disease transmission model in Stan, *Statistics in Medicine* (2021)

Gelman et al. Bayesian workflow, arXiv:2011.01808 (2020)

Outline:

- Basics of Bayesian analysis
- Markov chain Monte Carlo
- Basics of Stan
- Application: Disease transmission model

• Importance sampling and model comparison

Characterizing the posterior distribution

Expectation values:

Monte Carlo estimator:

Other summaries: variance, quantiles

$\mathbb{E}f(\theta) = \int f(\theta) p(\theta \mid y) d\theta$

$\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(N)} \sim p(\theta \mid v)$

 $\widehat{\mathbb{E}}f(\theta) = \frac{1}{N}\sum_{N}^{N}f(\theta^{(n)})$

How good is our Monte Carlo estimator $\mathbb{E} f(\theta)$?

Control expected square error:

$$\mathbb{E}\left[\left(\widehat{\mathbb{E}}f(\theta) - \mathbb{E}f(\theta)\right)^2\right] = \left(\widehat{\mathbb{E}}f(\theta) - \mathbb{E}f(\theta)\right)^2 + \operatorname{Var}\left[\widehat{\mathbb{E}}f(\theta)\right]$$

If $\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(N)}$ are i.i.d, the bias

Squared bias

variance

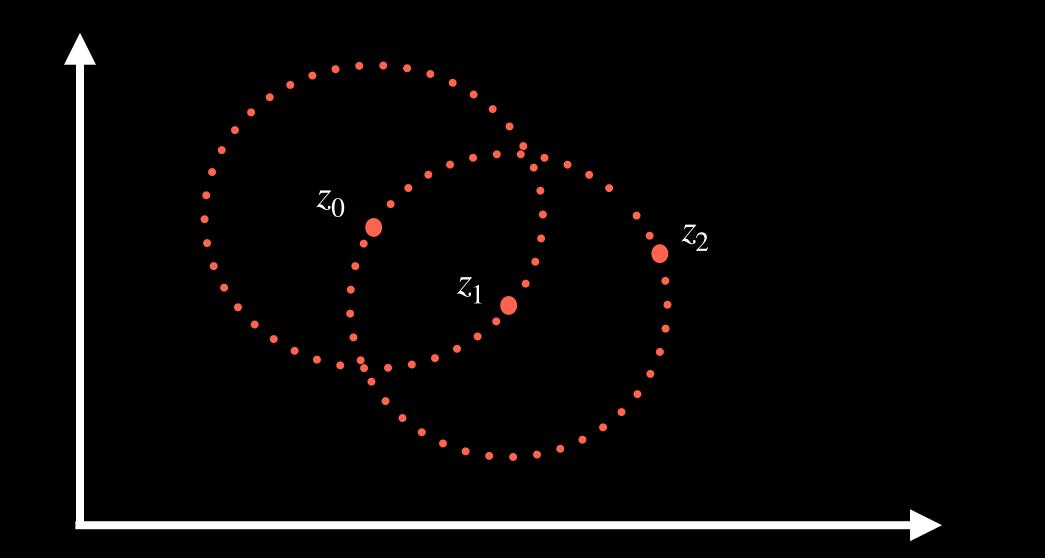
s is null and
$$\operatorname{Var}\left[\widehat{\mathbb{E}}f(\theta)\right] = \frac{1}{N}\operatorname{Var}f(\theta).$$

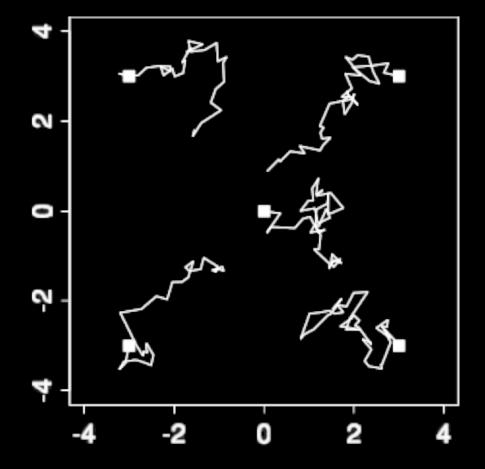
In practice, we cannot generate i.i.d samples from, and so we use Markov chain Monte Carlo.

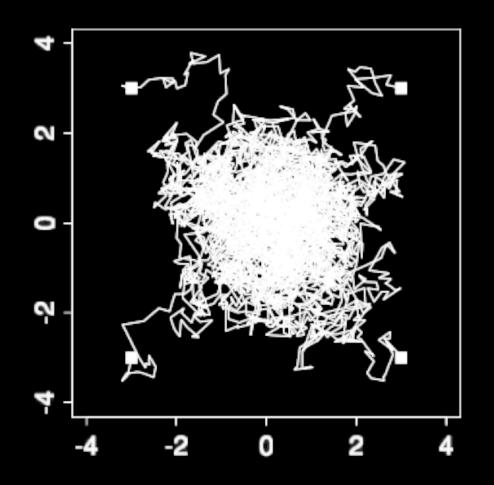
Initialize: $z_0 \sim p_0$

Transition kernel: $\Gamma(z^{(i+1)} | z^{(i)})$

If we construct Γ carefully $\lim z^{(i)} \sim p$ $i \rightarrow \infty$







Metropolis algorithm [Metropolis et al., 1953] Initialize: $z_0 \sim p_0$ Apply the transition kernel N times: **1.** Take a random step from to $\theta^{(i)}$ to propose a new sample $\theta^{(i+1)}$. 2. Accept the proposal with probability

Pr(Accept) = min

Return: $(\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(N)}).$

$$\left(\frac{p(\theta^{(i+1)} \mid y)}{p(\theta^{(i)} \mid y)}, 1\right).$$

Example: Metropolis algorithm [Metropolis et al., 1953]

Benefits:

- **1.** Only requires evaluating $p(\theta, y) = p(y \mid \theta) p(\theta)$
- **2.** Asymptotically, the algorithm samples from $p(\theta \mid y)$.

Drawback:

- 1. In the finite regime, the samples are biased.
- 2. The samples are <u>not</u> independent; they are correlated, which increases variance.

Example: Continuous diffusion process

MCMC can be approximated by a Langevin diffusion process Gelman et al, 1997, Roberts and Rosenthal, 1998.

- Initial distribution: $\pi_0 = \text{Normal}(\mu_0, \sigma_0^2)$
- Target distribution: $\pi = \text{normal}(\mu, \sigma^2)$

Then after time *T*,

 $\theta^{(T)} \sim \text{normal}[(\mu_0 - \mu)e^{-T} + \mu, (\sigma_0^2 - \sigma^2)e^{-2T} + \sigma^2)]$

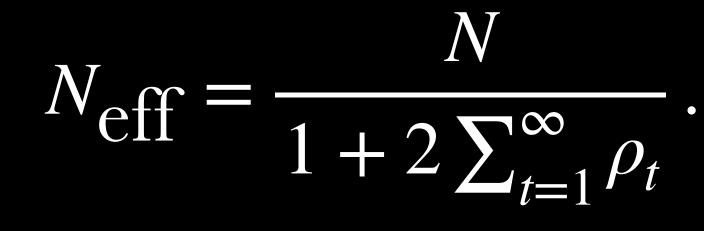
Variance of Monte Carlo estimator

For large *N*, have a central limit theorem,

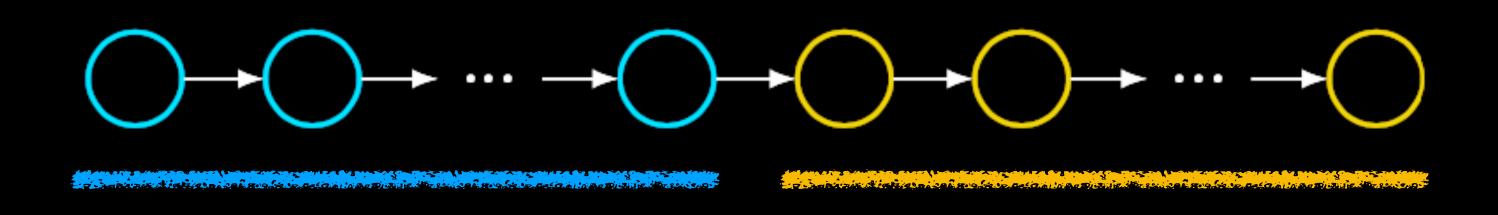
$N_{\rm eff}$ is the effective sample size.

Given autocorrelation ρ_t ,

$\frac{1}{N}\sum_{n} f(\theta^{(n)}) \approx_{\mathrm{d.}} \mathrm{Normal}\left(\mathbb{E}f(\theta), \frac{\mathrm{Var}f(\theta)}{N_{\mathrm{eff}}}\right),$



Handling the error in MCMC



Warmup: run MCMC and discard samples to make the bias negligable.

Sampling: run MCMC and collect samples to have a large ESS and a low Monte Carlo variance.

Which transition kernel should we use?

Many choices!

Langevin diffusion, ...

Hamiltonian Monte Carlo

- Scales in high-dimension
- Gradient-based, requires $\nabla_{\theta} \log p(\theta, y)$
- Difficult to tune!

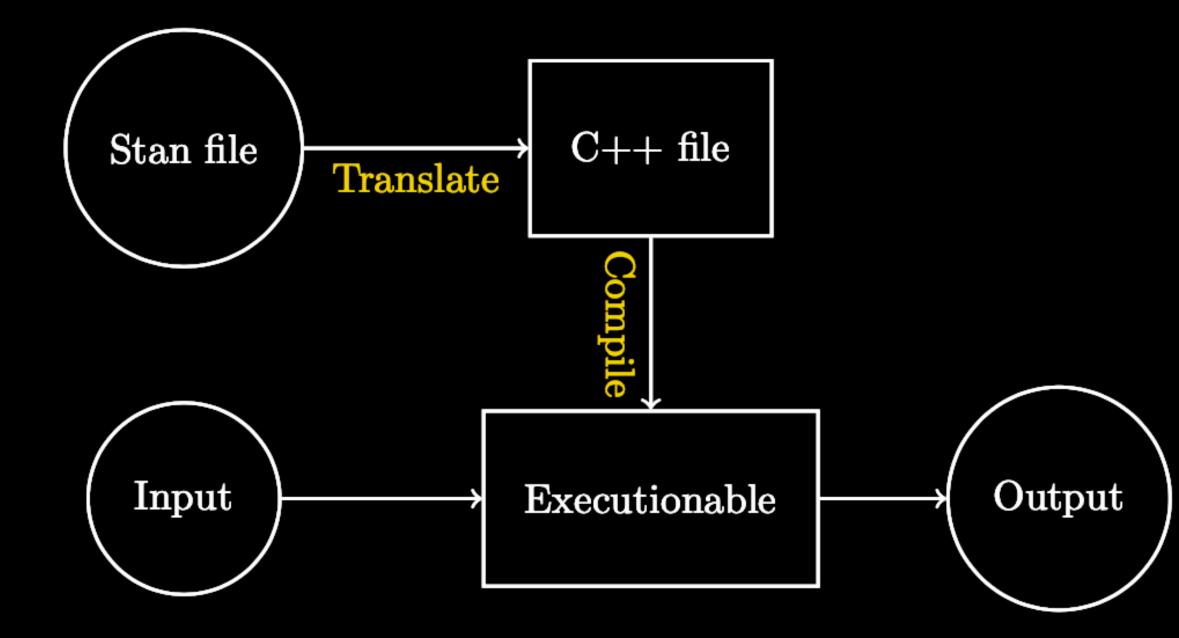
Stan automates the calculations of gradients and provides a self-tuning HMC algorithm.

Metropolis, Metropolis-Hastings, Gibbs, Hamiltonian Monte Carlo,

Outline: • Basics of Bayesian analysis • Markov chain Monte Carlo • Basics of Stan

- Application: Disease transmission model
- Model comparison

How Stan works



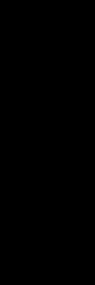
- **Stan file:** specifies $p(\theta, y)$.
- Input: y, tuning parameters
- **Output:** approx. samples from $p(\theta \mid y)$.
- Interface: R, Python, Julia, ...

Inference algorithms:

- Hamiltonian Monte Carlo
- No-U Turn sampler
- Laplace approximation
- Variational inference

()

• • •



How we will use Stan

https://stan-playground.flatironinstitute.org/

✓ No need to install Stan on your machine.

For full Stan capabilities: https://mc-stan.org/

- X Limited functionality: for demo purposes, not full use.

Example: Bayesian linear regression

The data generating process is: $p(y \mid \theta) = Normal(\beta x, \sigma).$

Goal: estimate $\theta = (\beta, \sigma)$ based on observations (x, y) and prior knowledge on β and σ .

Prior:

 $p(\beta) = Normal(2,1)$ $p(\sigma) = \mathbf{Gamma}(1,1)$

Writing the Stan file

Stan retains certain C++ features: variables need to be declared. statement ends with a semi-colon, e.g. real x;

The program is divided into blocks: • **data**: declare the data in the input.

- **parameters**: declare the parameters we want to sample.
- **model**: compute the log joint distribution

Writing the Stan file

model { target += normal lpdf(y | beta * x, sigma);

// or equivalently y ~ normal(beta * x, sigma);

Stan playground link:

}

https://stan-playground.flatironinstitute.org?project=https://gist.github.com/charlesm93/fef6c7960573d3a3d902f64fdd1d2d37

Check the inference

Are the chains still biased by their initialization?

Start each chain at a different location and check they converge to the same distribution: trace plots, density plots *R* diagnostic (aim for *R*

Is the variance of our Monte Carlo estimator small enough? • check the ESS (aim for ESS ≥ 100).

$$1.01$$
.

Check the trained model

Posterior predictive checks

Want to study the posterior predictive distribution,

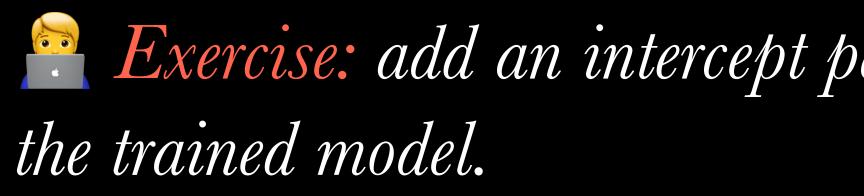
$$p(y_{\text{pred}} \mid y) = \int_{\Theta} p(y_{\text{pred}} \mid \theta) \ p(\theta \mid y) d\theta.$$

To do this, we'll use the generated quantities block.

Y Each time we draw a sample, $\theta^{(i)} = (\beta^{(i)}, \sigma^{(i)})$, simulate data

Improving the model

The posterior predictive check suggest our model can be improved with an intercept parameter.



Exercise: add an intercept parameter α , then check the inference and

General resources to use Stan

- User's guide (<u>https://mc-stan.org/docs/stan-users-guide/</u>)

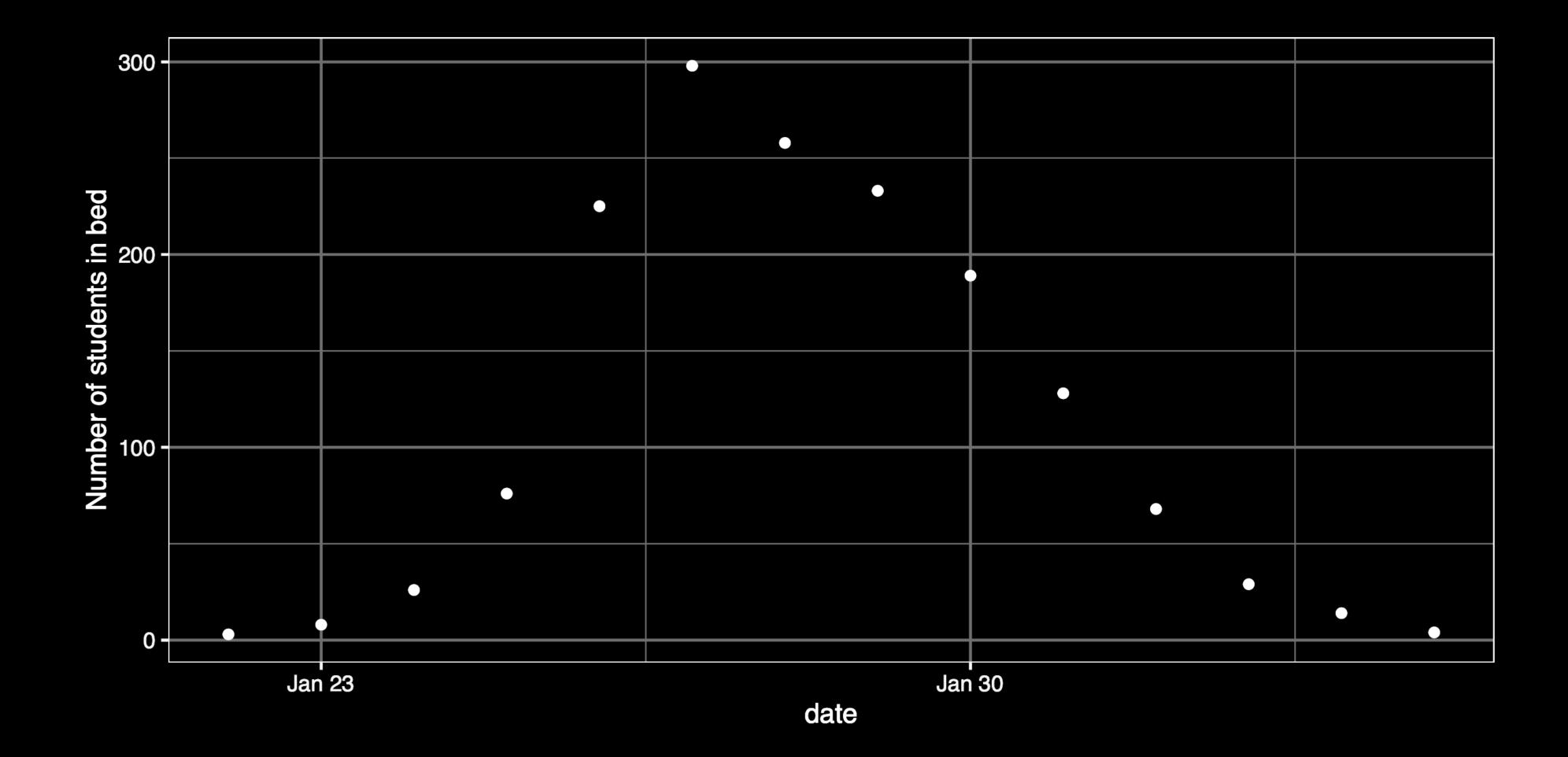
- Discussion forum (<u>https://discourse.mc-stan.org/</u>)

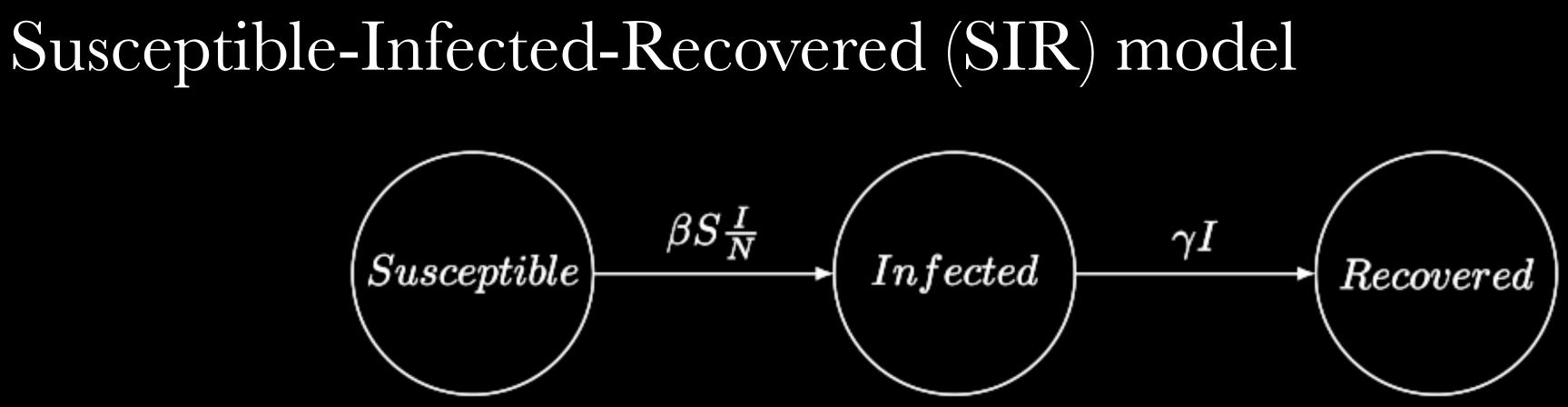
• Reference manual (<u>https://mc-stan.org/docs/reference-manual/</u>) • Functions manual (<u>https://mc-stan.org/docs/functions-reference/</u>)

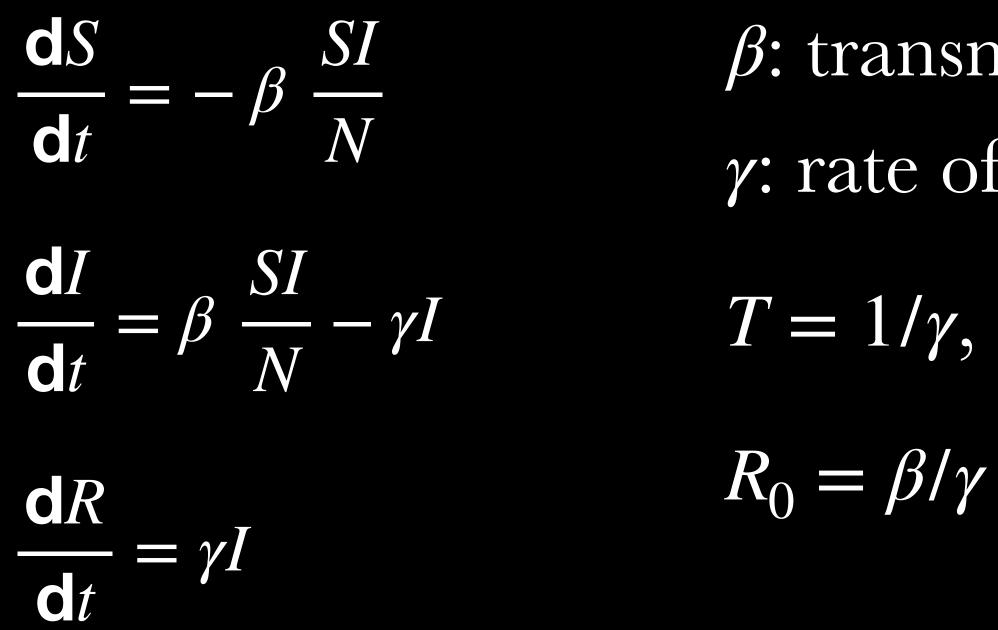
Outline:

- Basics of Bayesian analysis
- Markov chain Monte Carlo
- Basics of Stan
- Application: Disease transmission model
- Model comparison

1978 influenza outbreak in British boarding school.







- β : transmission rate
- γ: rate of recovery of infected individual
- $T = 1/\gamma$, recovery time

Which measurement model should we use?

Poisson likelihood parametrized by $\lambda(t) = I(t)$ with $\mathbb{E}y(t) = I(t)$ and Var(y(t)) = I(t).

Negative binomial likelihood parametrized by $\mu = I(t)$ with $\mathbb{E}y(t) = I(t)$ and $\operatorname{Var}(y(t)) = I(t) + \frac{I^2(t)}{\phi}$.

Which prior should we use?

- $p(\beta) = \text{Normal}^+(2,1)$: insures $\beta > 0$ and $\Pr(\beta < 4) = 0.975$.
- $p(\gamma) = \text{Normal}^+(0.4, 0.5)$: insures $\gamma > 0$ and $Pr(\gamma < 1) = 0.9$
- $p(\phi^{-1}) = \text{exponential}(5)$

90% of the time, expect patient to spend less than l one day in bed.

Exercise: Write and fit an SIR model for the 1978 influenza outbreak: (**0**_**0**) (

Tip: Code for Poisson: x ~ poisson (lambda)

- Check the standard diagnostics (\widehat{R} and ESS) and examine the density and trace plots. Is the inference reliable?
- Optional: what happens if you increase/reduce the length of the chain?
- Do the posterior predictive checks: does the model accurately describe the data.
- Report the posterior mean and 90% interval for β , γ , $T = 1/\gamma$ and $R_0 = \beta/\gamma$.

Stan playground link:

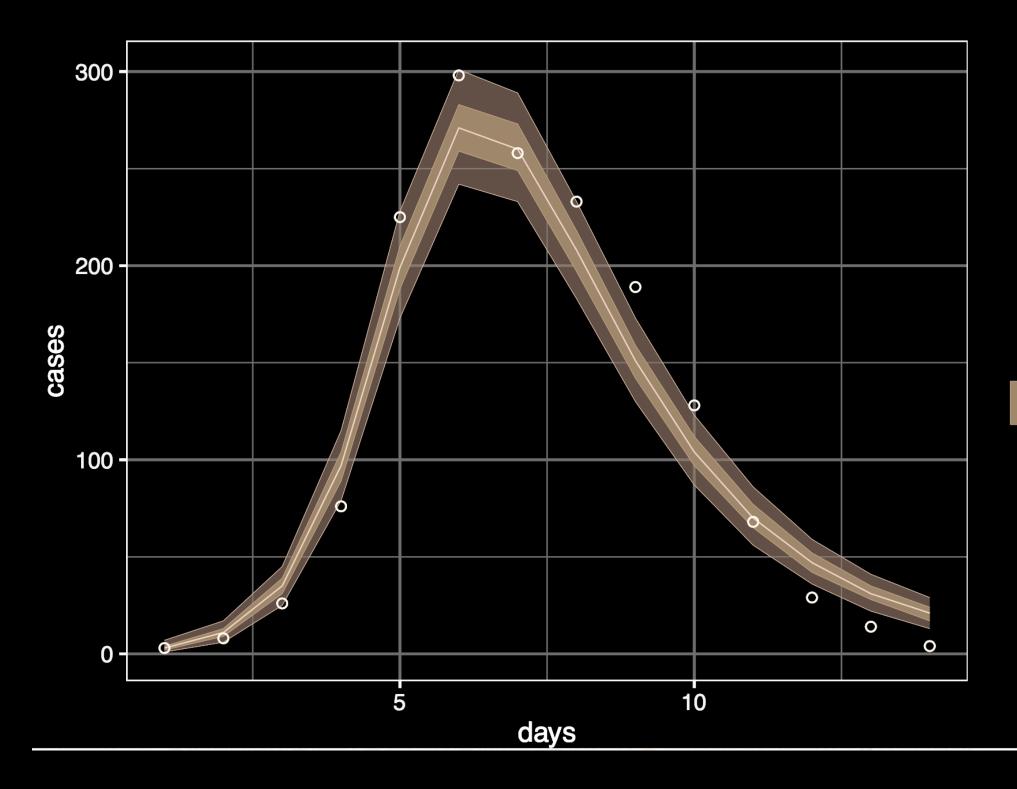
https://stan-playground.flatironinstitute.org?project=https://gist.github.com/charlesm93/e29d3a7daaa23569197042357fc96048

Code for Negative Binomial: x ~ neg binomial 2 (lambda, phi)

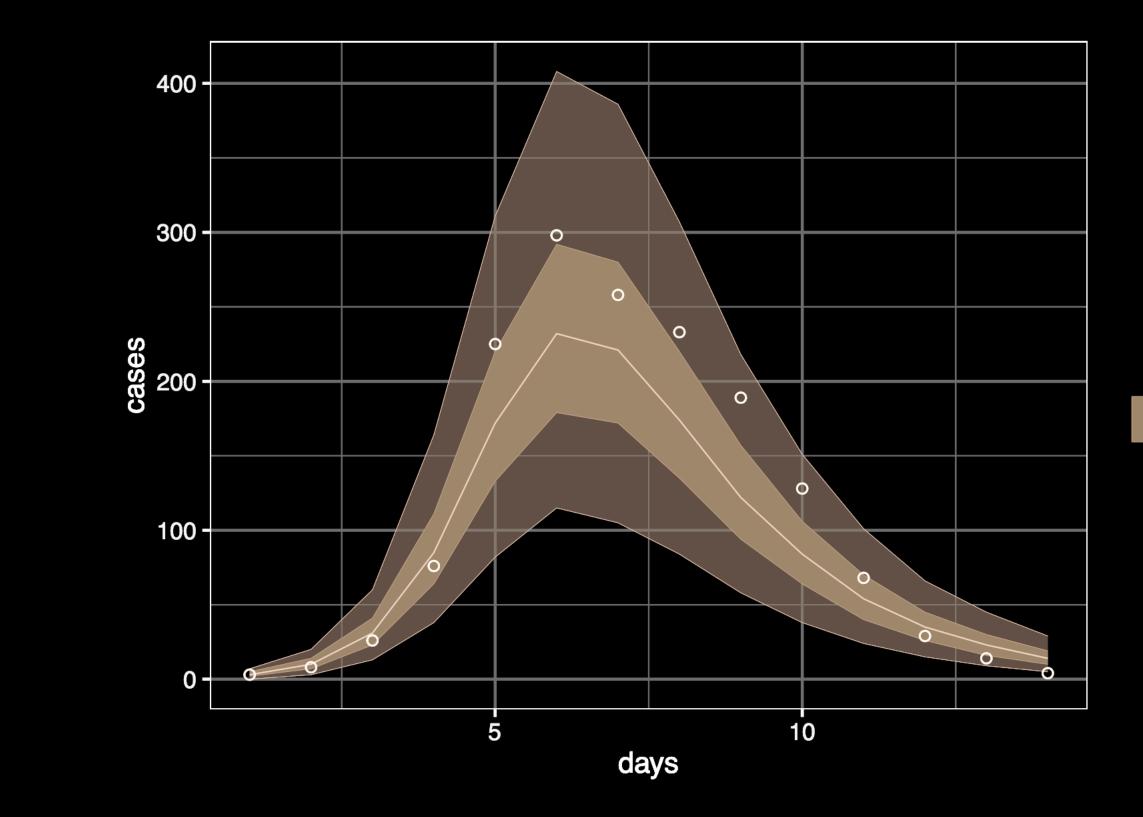
Outline:

- Basics of Bayesian analysis
- Markov chain Monte Carlo
- Basics of Stan
- Application: Disease transmission model
- Model comparison

Question: for the SIR model, do we get better predictions with the Poisson or the negative binomial likelihood?



Poisson Likelihood



Negative Binomial Likelihood

the Poisson or the negative binomial likelihood?

Test model predictions on a validation set: • Split data into a *training* and *validation* set.

• **Training set:** The data y_{tra} used to learn $p(\theta \mid y_{tra})$

• Validation set: The data y_{Val} to "test" model predictions.

Question: for the SIR model, do we get better predictions with

Testing predictions

Suppose we have a normal likelihood, with point estimates of the parameters,

Normal($\hat{\mu}(t), \hat{\sigma}$).

Our best prediction is $\tilde{y}(t) = \mu(t)$. Then the prediction error is $\operatorname{Err} = \left(\hat{\mu}(x)\right)$

To account for $\hat{\sigma}$, let's evaluate the point-estimate log predictive density,

p-lpd = log p(

= const

$$(t) - y_{\text{val}}(t) \Big)^2$$

$$y_{\text{val}}(t) \mid \hat{\mu}, \hat{\sigma})$$

t. $-\log \hat{\sigma} - \frac{1}{2\hat{\sigma}^2} \left(y_{\text{val}}(t) - \hat{\mu}(t) \right)^2$

Testing predictions

Suppose we have a Bernoulli likelihood, with point estimates of the parameters,

Bernoulli $(\hat{\pi}(t))$.

Our best prediction is $\tilde{y}(t) = \mathbb{I}(\hat{\pi}(t) > 0.5)$.

Then the prediction error is $\operatorname{Err} = \mathbb{I}(\tilde{y}(t) = y_{Val}(t)),$

and the point-estimate log predictive density,

 $p-lpd = \log p(y_{val}(t) \mid \hat{\pi}(t))$ $= y_{Val}(t) \log \hat{\pi}(t) + (1 - y_{Val}(t)) \log(1 - \hat{\pi}(t)).$

Testing Bayesian predictions

expected log predictive density,

In a Bayesian setting, we don't have a point estimate but a posterior $p(\theta \mid y_{tra})$.

To be Bayesian, we integrate with respect to the posterior and obtain the

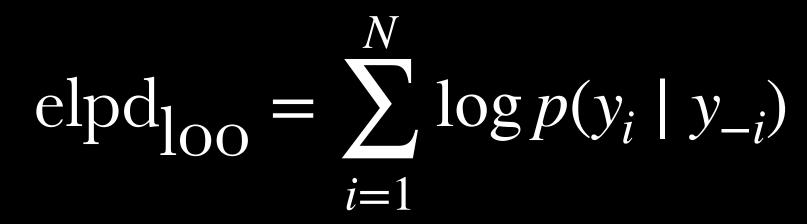
```
elpd = log p(y_{val}(t) | y_{tra})
```

```
= \log \int_{\Theta} p(y_{\text{val}}(t) \mid \theta) \ p(\theta) \ d\theta
```


Testing Bayesian predictions

7 How do we split the data into a training and a test set?

Proposition: do *leave-one-out cross validation* and compute



Recall

$$p(y_i \mid y_{-i}) = \int_{\Theta} p(y_i)$$

 $\theta p(\theta \mid y_i) d\theta.$

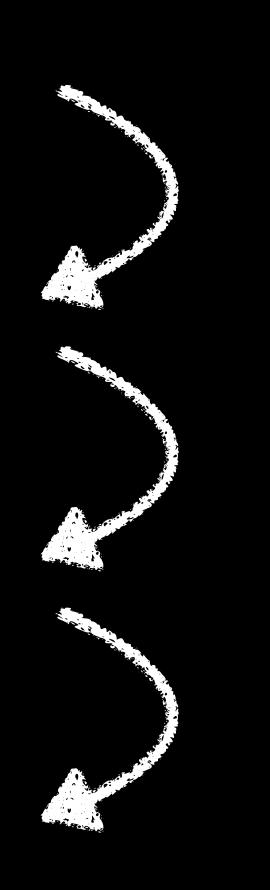
prediction error based on "best" prediction: $(y_{val} - \tilde{y})^2$.

point-wise log predictive score: p-lpd = $\log p(y_{val} | \hat{\theta})$

expected log predictive score: $elpd = log p(y_{val} | y_{tra})$

loo-CV: elpd₁₀₀

$$= \sum_{i=1}^{N} \log p(y_i \mid y_{-i}).$$



? How do we estimate elpd₁₀₀ efficiently?

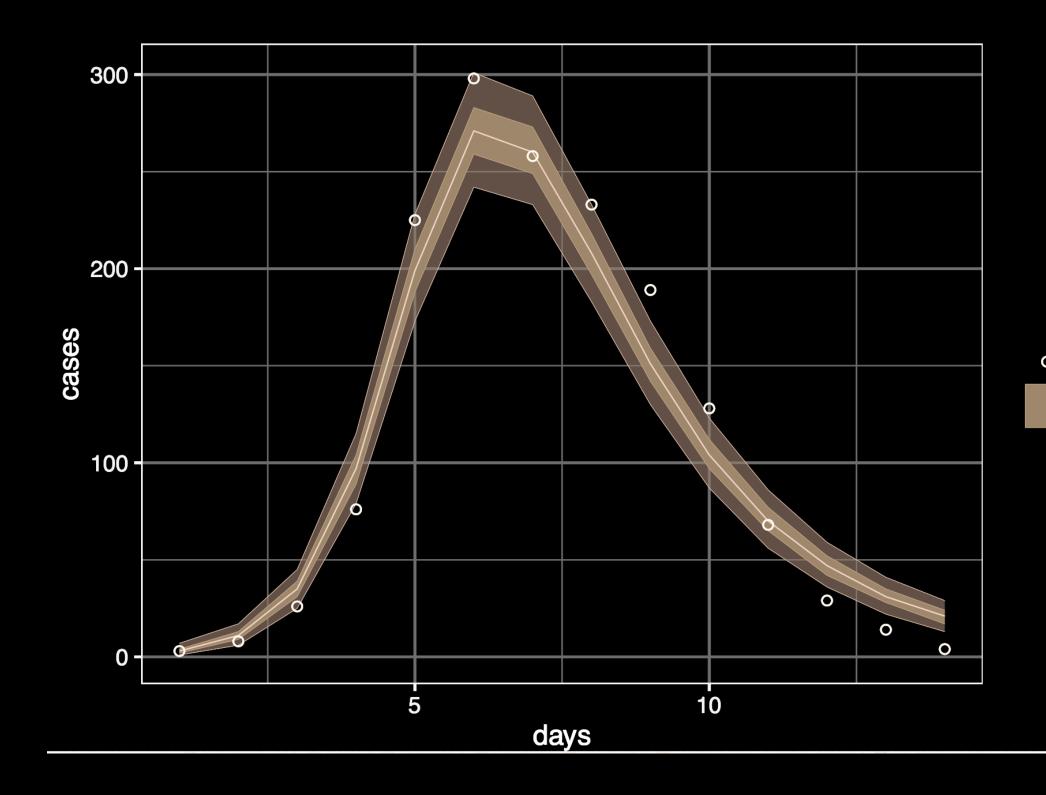
Which measurement model is better for the influenza data?

Poison: $elp_{loo} = -82.5 \pm 11$ **NegBn:** elp_loo = -64.0 ± 5.1

V Pareto-smoothed importance sampling (PSIS),* using the R package 100.

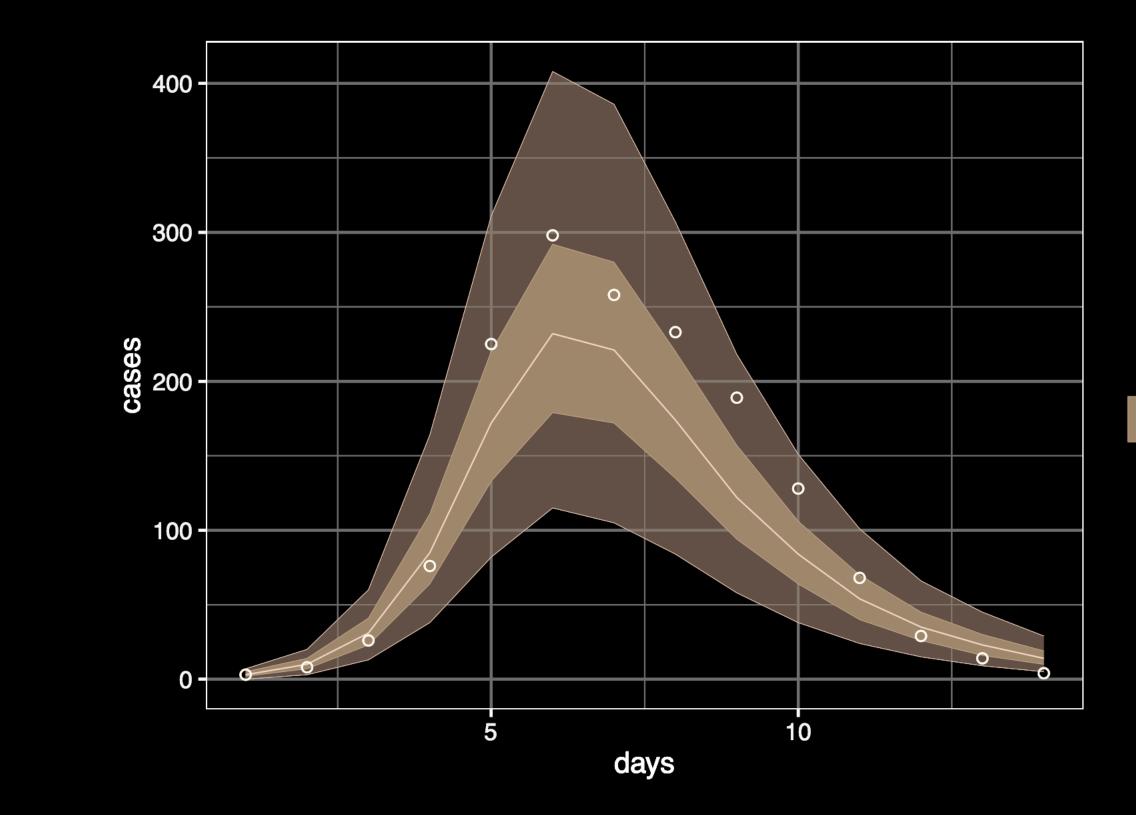
* Vehtari et al. Practical bayesian model evaluation using leave-one-

Question: for the SIR model, do we get better predictions with the Poisson or the negative binomial likelihood?



Poisson Likelihood

 $elp_{loo} = -82.5 \pm 11$



Negative Binomial Likelihood $elp_{loo} = -64.0 \pm 5.1$

Outline:

- Basics of Bayesian analysis
- Markov chain Monte Carlo
- Basics of Stan
- Application: Disease transmission model
- Model comparison
- Discussion

What we covered

Bayesian statistics:

- specify model via $p(\theta, y) = p(y \mid \theta) p(\theta)$
- estimate unknowns using posterior $p(\theta \mid y)$

Markov chain Monte Carlo:

- general purpose method to draw from $p(\theta \mid y)$
- computationally expensive!

Bayesian workflow:

- is the inference reliable?
- is the fitted model reliable?
- is our uncertainty well-calibrated?

efficient implementation in: Stan, PyMC, TensorFlow Prob, ...

What we didn't cover

Modeling techniques:

- prior specification/checking
- hierarchical models: population models, Gaussian processes, spatial models, ...

- Computation:
- detailed discussion of Hamiltonian Monte Carlo
- Approximate inference, e.g. variational inference
- Efficient algorithms on GPUs
- More ways to check reliability of inference

Where can I learn more?

- Bayesian Workflow. Gelman et al. arXiv:2011.01808 (textbook in progress)
- For how many iterations should we run MCMC? In the function. Such days have a final set of the final set. Socies and the final set of the set o Margossian and Gelman. Handbook of MCMC 2nd edition (in press)
- A conceptual introduction to Hamiltonian Monte Carlo Betancourt. *arXiv:1701.02434*
- Variational inference: a review for statisticians. Blei et al. Inten The near a large and they and a set of the set of Journal of the American Statistician
- Statistical Rethinking. McElreath
- Stan documentation. https://mc-stan.org/docs/

