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“The theory of inverse probability is founded upon a principle 
which is so simple and so general that it may be applied in all 
cases and all hypotheses.” 

—Pierre-Simon Laplace, 1814

“Bayesian inference is a flexible and powerful approach to 
modeling reality, making optimal predictions from data, and 
quantifying uncertainty in a coherent manner. Thanks to their 
versatility, Bayesian methods are now widely used in virtually 
all fields of science, engineering, and beyond.”

—Alexandre Bouchard-Côté, 2025



• Understand what Bayesian analysis is. 
• Understand how Bayesian computation is done. 
• Use the software Stan to fit and analyze models.

Goals:



• Research Fellow at the Flatiron Institute, New York 🇺🇸 
• Professor of  Statistics at the University of  British Columbia, 

Vancouver 🇨🇦 
• Core Stan developer 

🧑🏫 About me:



• Basics of  Bayesian analysis 
• Markov chain Monte Carlo 
• Basics of  Stan 
• Application: Disease transmission model 
• Model comparisons

Outline:



• Basics of  Bayesian analysis 
• Markov chain Monte Carlo 
• Basics of  Stan 
• Application: Disease transmission model 
• Model comparison

Outline:



What is a (Bayesian) model?

with  observed,  unknown model parameters. y θ

p(y, θ) = p(y ∣ θ) p(θ)

 is the likelihood. 
• For a fixed , defines a data generating process.
p(y ∣ θ)

θ

 is the prior. 
• understanding of   before we see the data. 
• information from previous analysis, scientific theory, etc. 
• regularization tool

p(θ)
θ



observed : 
• reported cases 
• hospital deaths

y

unobserved : 
• transmission rate 
• recovery rate 
• : future cases…

θ

f(θ)

likelihood : 
• epidemiological model 
• measurement model

p(y ∣ θ)

prior : 
• constraints on interpretable parameters 
• meta-analysis for asymptomatic rate 

p(θ)



Bayesian inference

Given observations , want to learn . y θ

Proposition: learn a posterior distribution.

p(θ ∣ y) =
p(y ∣ θ) p(θ)

p(y)

likelihood prior

“evidence” (normalizing constant)
posterior



Posterior of  infection rate β
Posterior of  infected cases and symptomatic cases



Example: normal-normal model
p(θ) = Normal(μ, τ)

p(yi ∣ θ) = Normal(θ, σ)

Suppose we have  i.i.d observations, .N y1, ⋯, yN

p(θ ∣ y1:N) = Normal ( μ/τ2 + Nȳ/σ2

1/τ2 + N/σ2
,

1
1/τ2 + N/σ2 )



🖌 Exercise 
• Derive the above expression 
• Show that  and  
• What is the posterior as ?

Var(θ ∣ y1:N) ≤ τ Var(θ ∣ y1:N) ≤ σ2/N .
N → ∞

p(θ ∣ y1:N) = Normal ( μ/τ2 + Nȳ/σ2

1/τ2 + N/σ2
,

1
1/τ2 + N/σ2 )



Bayesian learning

Suppose we have two independent observations,  and .y1 y2

p(θ ∣ y1, y2) ∝ p(y1, y2 ∣ θ) p(θ)
∝ p(y1 ∣ θ) p(y2 ∣ θ) p(θ)

∝ p(y2 ∣ θ) p(θ ∣ y1)



Bayesian workflow

Model 
p(y, θ) = p(y ∣ θ) p(θ)

Infer 
p( f(θ) ∣ y)

Criticize 
check inference, 
prediction, 
cross-validation, etc.



The published model is the ~15th iteration.

📄 Grinsztajn et al. Bayesian workflow for disease transmission 
     model in Stan, Statistics in Medicine (2021)

📄 Gelman et al. Bayesian workflow, arXiv:2011.01808 (2020)
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Characterizing the posterior distribution

Expectation values: 
𝔼f(θ) = ∫ f(θ) p(θ ∣ y)dθ

Monte Carlo estimator: 
                                       θ(1), θ(2), ⋯, θ(N) ∼ p(θ ∣ y)

̂𝔼 f(θ) =
1
N

N

∑
n=1

f (θ(n))

Other summaries: variance, quantiles



How good is our Monte Carlo estimator ?̂𝔼 f(θ)

Control expected square error:

𝔼 [( ̂𝔼 f(θ) − 𝔼f(θ))
2] = ( ̂𝔼 f(θ) − 𝔼f(θ))

2
+ Var [ ̂𝔼 f(θ)]

Squared bias variance

If   are i.i.d, the bias is null and .θ(1), θ(2), ⋯, θ(N) Var [ ̂𝔼 f(θ)] =
1
N

Var f(θ)



In practice, we cannot generate i.i.d samples from, 
and so we use Markov chain Monte Carlo.

Initialize: z0 ∼ p0

Transition kernel: Γ (z(i+1) ∣ z(i)) z0

z1

z2

If  we construct  carefully  
 

Γ
lim
i→∞

z(i) ∼ p



Metropolis algorithm [Metropolis et al., 1953]

Initialize: z0 ∼ p0

Apply the transition kernel  times: 

1. Take a random step from to  to propose a new sample . 

2. Accept the proposal with probability 

 

N

θ(i) θ(i+1)

Pr(Accept) = min ( p(θ(i+1) ∣ y)
p(θ(i) ∣ y)

,1) .

Return: .(θ(1), θ(2), ⋯, θ(N))



Example: Metropolis algorithm [Metropolis et al., 1953]

Benefits: 

1. Only requires evaluating  

2. Asymptotically, the algorithm samples from 

p(θ, y) = p(y ∣ θ) p(θ)

p(θ ∣ y) .

Drawback: 

1. In the finite regime, the samples are biased. 

2. The samples are not independent; they are correlated, 

which increases variance.



Example: Continuous diffusion process

MCMC can be approximated by a Langevin diffusion process 
[Gelman et al, 1997, Roberts and Rosenthal, 1998].

• Initial distribution:  

• Target distribution: 

π0 = Normal(μ0, σ2
0)

π = normal(μ, σ2)

Then after time , 
                

T
θ(T) ∼ normal[(μ0 − μ)e−T + μ, (σ2

0 − σ2)e−2T + σ2)]



Variance of  Monte Carlo estimator

For large , have a central limit theorem, N
1
N ∑

n

f (θ(n)) ≈d. Normal (𝔼f(θ),
Varf(θ)

Neff ),

Given autocorrelation , ρt

Neff =
N

1 + 2∑∞
t=1 ρt

.

  is the effective sample size.Neff



Handling the error in MCMC

Warmup: run MCMC and discard samples to make the bias 
negligable.

Sampling: run MCMC and collect samples to have a large ESS 
and a low Monte Carlo variance. 



Which transition kernel should we use?

Many choices!
Metropolis, Metropolis-Hastings, Gibbs, Hamiltonian Monte Carlo, 
Langevin diffusion, … 

Hamiltonian Monte Carlo 
• Scales in high-dimension 
• Gradient-based, requires  
• Difficult to tune!

∇θlog p(θ, y)

Stan automates the calculations of  gradients and 
provides a self-tuning HMC algorithm.
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How Stan works

• Stan file: specifies . 
• Input: , tuning parameters 
• Output: approx. samples from . 
• Interface: R, Python, Julia, … 

p(θ, y)
y

p(θ ∣ y)

Inference algorithms: 
• Hamiltonian Monte Carlo 
• No-U Turn sampler 
• Laplace approximation 
• Variational inference 
• …



How we will use Stan

https://stan-playground.flatironinstitute.org/

✅ No need to install Stan on your machine.
❌ Limited functionality: for demo purposes, not full use.

For full Stan capabilities: https://mc-stan.org/



Example: Bayesian linear regression

The data generating process is: 

p(y ∣ θ) = Normal(βx, σ) .

Goal: estimate  based on observations 
 and prior knowledge on  and .

θ = (β, σ)
(x, y) β σ

Prior: 
 p(β) = Normal(2,1)

p(σ) = Gamma(1,1)



Writing the Stan file

Stan retains certain C++ features: 
• variables need to be declared. 
• statement ends with a semi-colon, e.g. 

real x; 

The program is divided into blocks: 
• data: declare the data in the input. 
• parameters: declare the parameters we want to sample. 
• model: compute the log joint distribution



Writing the Stan file

model { 
  target += normal_lpdf(y | beta * x, sigma); 

  // or equivalently 
  y ~ normal(beta * x, sigma); 
}

🧑💻 Code demo.
Stan playground link: 
https://stan-playground.flatironinstitute.org?project=https://gist.github.com/charlesm93/fef6c7960573d3a3d902f64fdd1d2d37

https://stan-playground.flatironinstitute.org/?project=https://gist.github.com/charlesm93/fef6c7960573d3a3d902f64fdd1d2d37


Check the inference

Are the chains still biased by their initialization?

Start each chain at a different location and check they 
    converge to the same distribution: 

• trace plots, density plots 
• diagnostic (aim for ).̂R ̂R ≤ 1.01

Is the variance of  our Monte Carlo estimator small enough? 
• check the ESS (aim for ).ESS ≥ 100



Check the trained model

Posterior predictive checks
💡Each time we draw a sample, , simulate data 

.

θ(i) = (β(i), σ(i))
y(i)
pred ∼ Normal (xβ(i), σ(i))

Want to study the posterior predictive distribution, 

             .p(ypred ∣ y) = ∫Θ
p(ypred ∣ θ) p(θ ∣ y)dθ

To do this, we’ll use the generated quantities block.



Improving the model

The posterior predictive check suggest our model can be 
improved with an intercept parameter.

🧑💻 Exercise: add an intercept parameter , then check the inference and 
the trained model.

α



General resources to use Stan

• User’s guide (https://mc-stan.org/docs/stan-users-guide/) 
• Reference manual (https://mc-stan.org/docs/reference-manual/) 
• Functions manual (https://mc-stan.org/docs/functions-reference/) 

• Discussion forum (https://discourse.mc-stan.org/)

https://mc-stan.org/docs/stan-users-guide/
https://mc-stan.org/docs/reference-manual/
https://mc-stan.org/docs/functions-reference/
https://discourse.mc-stan.org/
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1978 influenza outbreak in British boarding school.



Susceptible-Infected-Recovered (SIR) model

dS
dt

= − β
SI
N

dI
dt

= β
SI
N

− γI

dR
dt

= γI

: transmission rateβ
: rate of  recovery of  infected individualγ

, recovery timeT = 1/γ

R0 = β/γ



Which measurement model should we use?

Poisson likelihood parametrized by  
with  and .

λ(t) = I(t)
𝔼y(t) = I(t) Var(y(t)) = I(t)

Negative binomial likelihood parametrized by  

with  and .

μ = I(t)

𝔼y(t) = I(t) Var(y(t)) = I(t) +
I2(t)

ϕ



Which prior should we use?

• : insures  and . 

• : insures  and  

•

p(β) = Normal+(2,1) β > 0 Pr(β < 4) = 0.975

p(γ) = Normal+(0.4,0.5) γ > 0 Pr(γ < 1) = 0.9

p(ϕ−1) = exponential(5)
90% of  the time, 
expect patient to 
spend less than 
1 one day  in bed.

🧑💻 Code demo.



• Check the standard diagnostics ( and ESS) and examine the density 
and trace plots. Is the inference reliable? 

• Optional: what happens if  you increase/reduce the length of  the chain? 
• Do the posterior predictive checks: does the model accurately describe the data. 
• Report the posterior mean and 90% interval for , ,  and .

̂R

β γ T = 1/γ R0 = β/γ

🧑💻 Exercise: Write and fit an SIR model for the 1978 influenza outbreak:

Stan playground link: 
https://stan-playground.flatironinstitute.org?project=https://gist.github.com/charlesm93/e29d3a7daaa23569197042357fc96048

Tip: Code for Poisson: x ~ poisson(lambda) 
Tip: Code for Negative Binomial: x ~ neg_binomial_2(lambda, phi)

https://stan-playground.flatironinstitute.org/?project=https://gist.github.com/charlesm93/e29d3a7daaa23569197042357fc96048
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Question: for the SIR model, do we get better predictions with 
the Poisson or the negative binomial likelihood?

Poisson Likelihood Negative Binomial Likelihood



Question: for the SIR model, do we get better predictions with 
the Poisson or the negative binomial likelihood?

💡Test model predictions on a validation set: 
• Split data into a training and validation set. 

• Training set: The data  used to learn  

• Validation set: The data  to “test” model predictions.

ytra p(θ ∣ ytra)

yval



Testing predictions

Suppose we have a normal likelihood, with point estimates of   
the parameters, 

.Normal( ̂μ(t), ̂σ)

Our best prediction is .ỹ(t) = μ(t)

Then the prediction error is 
Err = ( ̂μ(t) − yval(t))

2
.

To account for , let’s evaluate the point-estimate log predictive density, 

p-lpd = 

̂σ

log p(yval(t) ∣ ̂μ, ̂σ)

= const. − log ̂σ −
1

2 ̂σ2 (yval(t) − ̂μ(t))
2



Testing predictions

Suppose we have a Bernoulli likelihood, with point estimates of   
the parameters, 

Bernoulli( ̂π(t)) .

Our best prediction is ỹ(t) = 𝕀( ̂π(t) > 0.5) .

Then the prediction error is 
,Err = 𝕀(ỹ(t) = yval(t))

and the point-estimate log predictive density, 

p-lpd =  
                                             

log p(yval(t) ∣ ̂π(t))
= yval(t)log ̂π(t) + (1 − yval(t))log(1 − ̂π(t)) .



Testing Bayesian predictions

In a Bayesian setting, we don’t have a point estimate but a posterior . p(θ ∣ ytra)

To be Bayesian, we integrate with respect to the posterior and obtain the 
expected log predictive density, 

elpd = log p(yval(t) ∣ ytra)

= log∫Θ
p(yval(t) ∣ θ) p(θ) dθ



Testing Bayesian predictions

❓How do we split the data into a training and a test set?

Proposition: do leave-one-out cross validation and compute  

elpdloo =
N

∑
i=1

log p(yi ∣ y−i)

Recall 

.p(yi ∣ y−i) = ∫Θ
p(yi ∣ θ) p(θ ∣ yi) dθ



Summary

prediction error based on “best” prediction: (yval − ỹ)2 .

point-wise log predictive score: p-lpd = log p(yval ∣ ̂θ)

expected log predictive score: elpd = log p(yval ∣ ytra)

loo-CV: elpdloo =
N

∑
i=1

log p(yi ∣ y−i) .



❓How do we estimate  efficiently?elpdloo

✅ Pareto-smoothed importance sampling (PSIS),* using the R package loo.

* 📄 Vehtari et al. Practical bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and Computing 2024

❓Which measurement model is better for the influenza data?

Poison: elp_loo   
NegBn: elp_loo 

= − 82.5 ± 11
= − 64.0 ± 5.1



Question: for the SIR model, do we get better predictions with 
the Poisson or the negative binomial likelihood?

Poisson Likelihood Negative Binomial Likelihood

elp_loo = − 82.5 ± 11 elp_loo = − 64.0 ± 5.1
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What we covered

Bayesian statistics: 
• specify model via  
• estimate unknowns using posterior 

p(θ, y) = p(y ∣ θ) p(θ)
p(θ ∣ y)

Markov chain Monte Carlo: 
• general purpose method to draw from  
• computationally expensive! 
• efficient implementation in: Stan, PyMC, TensorFlow Prob, …

p(θ ∣ y)

Bayesian workflow: 
• is the inference reliable? 
• is the fitted model reliable? 
• is our uncertainty well-calibrated?



What we didn’t cover

Modeling techniques: 
• prior specification/checking  
• hierarchical models: population models, 

Gaussian processes, spatial models, …

Computation: 
• detailed discussion of  Hamiltonian Monte Carlo 
• Approximate inference, e.g. variational inference 
• Efficient algorithms on GPUs 
• More ways to check reliability of  inference



Where can I learn more?
📕 Bayesian Workflow. Gelman et al. arXiv:2011.01808 
     (textbook in progress) 
 
📄 For how many iterations should we run MCMC?  
     Margossian and Gelman. Handbook of  MCMC 2nd edition (in press) 
 
📄 A conceptual introduction to Hamiltonian Monte Carlo 
     Betancourt. arXiv:1701.02434 

📄 Variational inference: a review for statisticians. Blei et al. 
Journal of  the American Statistician 
 
📕 Statistical Rethinking. McElreath 
 
📘 Stan documentation. https://mc-stan.org/docs/

🌍 https://charlesm93.github.io/

https://arxiv.org/abs/1701.02434

