Bayesian Statistics:
a practical introduction

Charles Margossian
(Flatiron Institute)



“Bayesian inference is a flexible and powerful approach to
modeling reality, making optimal predictions from data, and
quantifying uncertainty in a coherent manner. Thanks to their
versatility, Bayesian methods are now widely used in virtually
all fields of science, engineering, and beyond.”

— Alexandre Bouchard-Coté, 2025

“The theory of inverse probability is founded upon a principle
which is so simple and so general that it may be applied in all
cases and all hypotheses.”

— P1erre-Simon Laplace, 1814



Goals:

e Understand what Bayesian analysis 1s.
e Understand how Bayesian computation 1s done.
e Use the software to fit and analyze models.



= About me:

Research Fellow at the Flatiron Institute, New York
Protessor of Statistics at the University of British Columbia,

Vancouver &
Core Stan developer
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Outline:
 Basics of Bayesian analysis
e Markov chain Monte Carlo
 Basics of Stan
e Application: Disease transmission model
e Model comparisons
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What is a (Bayesian) model?

p(y,0) =pQy | 0) p(6)

with y observed, & unknown model parameters.

p(y | 0) 1s the lkelihood.
e lor a fixed 0, defines a data generating process.

p(6) 1s the prio.

e understanding of 6 before we see the data.

* nformation from previous analysis, scientific theory, etc.
* regularization tool
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Estimation of SARS-CoV-2 mortality during the
early stages of an epidemic: A modeling study

in Hubei, China, and six regions in Europe
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Garyfallos Konstantinoudis?, Nicola Low ', Christian L. Althaus’, Julien Riou'**

likelihood p(y | 6):
| * epidemiological model
: e measurement model

observed y:

* reported cases
* hospital deaths

unobserved 6:

® transmission rate
® recovery rate

e f(0): tuture cases...

p(0):
e constraints on interpretable parameters

* meta-analysis for asymptomatic rate




Bayesian inference

(G1ven observations y, want to learn 6.

Proposition: learn a posterior distribution.

#~ Prior

likelihood s

p(y | 6) p(©)

p@|y) =

posterior

e “evidence” (normalizing constant)
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Example: normal-normal model
p(0) = Normal(u, 7)

p(y; | ) = Normal(8, o)

Suppose we have N 1.1.d observations, y;, «*+, yv.

ult* 4+ Nylo” |
1/22 + N/o2 ~ 1/72 + N/o2

p@ | y.y) = Normal(



ult* + Nylo? |
1/72 + N/o2 ~ 1/72 + N/o2

p(@ | y;.n) = Normal (

<L Exercise

o Denwe the above expression

o Show that Var(0 | y,.y) < 7 and Var(0 | y,.y) < 6°IN.
o What s the posterior as N — oo?



Bayesian learning

Suppose we have two independent observations, y, and y;.

pO |y, y) xply;,y, | 0) p0)
x p(y; | 0) p(y, | 0) p(O)

x p(y, | 0) p(0 | y))



Bayesian workflow

‘ Application

Model Criticize
Model Infer Criticize
p(y,0) =p(y | 0) p(6) p(f(0) | y) check inference,
prediction,

cross-validation, etc.
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T'he published model 1s the ~15th 1teration.

B Grinsztajn et al. Bayesian workflow for disease transmission
model 1 Stan, Statistics in Medicine (2021)

B Gelman et al. Bayesian worktlow, arXw:2011.01808 (2020)
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Characterizing the posterior distribution

Expectation values:

—f(0) = Jf(ﬁ) p@ | y)do

Monte Carlo estimator:
O 9@ ... N ~ p@ | y)

- ] & o
-f(9)=NZ;f(9 )

Other summaries: variance, quantiles



How good 1is our Monte Carlo estimator

Control expected square error:

- f(6) -

: [(A

= 10) -

-f(H))z] = (

Squared blas

Ef0)?

f(@)) + Var [

If 0,09, .... 6™ are i.i.d, the bias is null and Var [/—\f(é’)]

Ef0)

variance

= %Var 1(0).



In practice, we cannot generate 1.1.d samples from,
and so we use Markov chain Monte Carlo.

InitialiZ€Z ZO ~ pO

Transition kernel: T" (1 | z)

It we construct I' caretully
lim % ~ p

[— OO




Metropolis algorithm |[Metropolis et al., 1953]
Iﬂiti&liZ@: ZO B p()
Apply the transition kernel N times:

1. Take a random step from to 8" to propose a new sample 6"

2. Accept the proposal with probability

6(i+1)
Pr(Accept) = min p(,—‘y),l .
p(0? | y)

Return: («9(1), 02 ... H(N)) .

1)



Example: Metropolis algorithm |Metropolis et al., 1953]

Benefits:

1. Only requires evaluating p(6,y) = p(y | 6) p(6)
2. Asymptotically, the algorithm samples from p(@ | y) .

Drawback:

1. In the finite regime, the samples are biased.

2. 'The samples are not independent; they are correlated,

which 1increases variance.



Example: Continuous diffusion process

MCMUG can be approximated by a Langevin ditfusion process
|Gelman et al, 1997, Roberts and Rosenthal, 1998].

e Initial distribution: 7, = Normal(xq, 62)

o Target distribution: 7 = normal(u, 6°)

Then atter time 7,

0" ~ normal[(uy — p)e™" + u, (65 — 6°)e™* + 6°)]



Variance of Monte Carlo estimator

For large N, have a central limit theorem,

%Zf(ﬁ(”)) ~q Normal (

N.gr1s the effective sample size.

(G1iven autocorrelation p,,




Handling the error in MCMC

{ O IR I TR I “.. R ARG S T “., R AL MR SRS sl p ) TV BT AT DS AR AL AR S T DS AR S s

Warmup: run MCMC and discard samples to make the bias
negligable.

Sampling: run MCMC and collect samples to have a large ESS

and a low Monte Carlo variance.



Which transition kernel should we use?

Many choices!

Metropolis, Metropolis-Hastings, (Gibbs,

LLangevin diffusion, ...

Hamiltonian Monte Carlo

* Scales in high-dimension

e Gradient-based, requires V,logp(6, y)
e Dhthcult to tune!

automates the calculations of gradients and
provides a selt-tuning HMC algorithm.
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How works

e Stan file: specifies p(,y).
e Input: y, tuning parameters

Stan file f————— C++ file *  Output: approx. samples from p(@ | y).
5 * Interface: R, Python, Julia, ...
=
g,
. N Inference algorithms:
npu | o .
P FOPIHIOTADE e Hamiltonian Monte Carlo

e No-U Turn sampler
e [aplace approximation
 Variational inference



How we will use

https:/ /stan-playground.flatironinstitute.org/

¥ No need to install Stan on your machine.

Limited tunctionality: for demo purposes, not tull use.

For tull capabilities: https://mc-stan.org/



Example: Bayesian linear regression

I'he data generating process 1s:
p(y | ) = Normal(px, o).

Goal: estimate 8 = (S, ) based on observations
(x,y) and prior knowledge on f and .

Prior:

p(f) = Normal(2,1)
p(o) = Gamma(l,1)



file

Writing the

retains certain CG++ features:

e variables need to be declared.

* statement ends with a semi-colon, e.g.
real x;

T'he program 1s divided into blocks:
e data: declare the data in the mput.
* parameters: declare the parameters we want to sample.

e model: compute the log joint distribution



Writing the file

model {
target += normal lpdf(y | beta * x, sigma);

// or equivalently
Yy ~ normal (beta * x, sigma);

2 (Code demo.
Stan playground link:

https://stan-playground.flatironinstitute.org?project=https://qgist.github.com/charlesm93/fef6¢7960573d3a3d902{64fdd1d2d37



https://stan-playground.flatironinstitute.org/?project=https://gist.github.com/charlesm93/fef6c7960573d3a3d902f64fdd1d2d37

Check the interence

Are the chains still biased by their imtiahization?

Start each chain at a difterent location and check they
converge to the same distribution:
* trace plots, density plots
¢ R diagnostic (aim for R < 1.01).

Is the variance of our Monte Carlo esimator small enough?

* check the ESS (aim for ESS > 100).



Check the trained model

Posterior predictive checks

® Each time we draw a sample, O = (ﬁ(i), a(i)) , sitmulate data

yl(;)re 1~ Normal (xﬁ(i), a(i)).

Want to study the posterior predictive distribution,

POpred 1Y) = [ POpred | €) PO ] y)do.
S,

1o do this, we’ll use the generated guantities block.



Improving the model

T'he posterior predictive check suggest our model can be
improved with an intercept parameter.

& Lxercise: add an intercept parameter a, then check the inference and
the trained model.



(General resources to use

e User’s guide (https://mc-stan.org/docs/stan-users-guide/)
* Reterence manual (https://mc-stan.org/docs/reference-manual/)
 Functions manual (https://mc-stan.org/docs/functions-reference/)

* Discussion torum (https://discourse.mc-stan.org/)



https://mc-stan.org/docs/stan-users-guide/
https://mc-stan.org/docs/reference-manual/
https://mc-stan.org/docs/functions-reference/
https://discourse.mc-stan.org/
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1978 influenza outbreak in British boarding school.

300

200

Number of students in bed

Jan 23

date

Jan 30




Susceptible-Infected-Recovered (SIR) model

. BS% 1

Susceptible Infected Recovered
ds 5 S1 f: transmission rate
dt N y: rate of recovery ot intected individual
d7 s S 1 "
e p—— — IrcCovery UuUInc
y Y it y
dR Ry = ply



Which measurement model should we use?

Poisson likelihood parametrized by A(r) = I(¢)
with Ey(¢) = I(r) and Var(y(z)) = 1(2).

Negatwwe binomial likelihood parametrized by u = I()
. I°(1)
with Ey(#) = I(r) and Var(y(0)) = I(r) + -




Which prior should we use?

e p(f)=Normal™(2,1): insures > 0 and Pr(8 < 4) = 0.975.
* p(y) = Normal'(0.4,0.5): mmsures y > 0 and Pr(y < 1) = 0.9

o p(¢p!) = exponential(5) .
90% of the time,

expect patient to
spend less than
| one day 1n bed.

2 (Code demo.



& Lvercise: White and fit an SIR model for the 1978 influenza outbreak:

T'1p: Code tor Poisson: x ~ poisson (1lambda)

Code for Negative Binomial: x ~ neg binomial 2 (lambda, phi)

o Check the standard diagnostics ( R and ESS ) and examine the density
and trace plots. s the inference reliable?
o Ophnal: what happens if you increase/reduce the length of the chain?
* Do the posterior predictive checks: does the model accurately describe the data.
* Report the posterior mean and 90%0 wnterval for p, y, T = 1/y and Ry = ply.

Stan playground link:

https://stan-playground.flatironinstitute.org?project=https://qgist.github.com/charlesm93/e29d3a/daaa23569197042357{c96048



https://stan-playground.flatironinstitute.org/?project=https://gist.github.com/charlesm93/e29d3a7daaa23569197042357fc96048
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Question: for the SIR model, do we get better predictions with
the Poisson or the negative binomial likelihood?

cases

300

200

100

days

Poisson Likelihood

400

300

100

5 10
days

Negative Binomial Likelithood



Question: for the SIR model, do we get better predictions with
the Poisson or the negative binomial likelihood?

® Test model predictions on a validation set:
® Split data into a framning and validation set.

* Training set: |'he data y4 used to learn p(0 | yirq)

e Validation set: l'he data y,,j to “test” model predictions.



Testing predictions

Suppose we have a normal likelihood, with point estimates of

the parameters,
Normal(fi(¢), 6).

Our best prediction 1s ¥(¢) = u(z).

T'hen the prediction error 1s

Err = () = g @) -

To account for 6, let’s evaluate the pownt-estimate log predictive density,

p-Ipd = log p(y,,,1(®) | 4. 6)

(yval® - i)

= const. — log 6 —
262



Testing predictions

Suppose we have a Bernoulli likelihood, with point estimates of
the parameters,

Bernoulli(7z(7)) .
Our best prediction 1s ¥(¢) = I(z(r) > 0.5).

T'hen the prediction error 1s
Err =15 = yy41(0);

and the pownt-estimate log predictive density,

p-Ipd = log p(y,,,1(0) | #(1))
= Yual(Dlog (7)) + (1 — yy 41(0))]log(1 — 7(7)) .



Testing Bayesian predictions

In a Bayesian setting, we don’t have a point estimate but a posterior p(@ | yira)-

To be Bayesian, we integrate with respect to the posterior and obtain the
expected log predictive density,

elpd — Ing(yval(t) ‘ )’tra)

= logJ P(Yy41(D | 0) p(0) dO
G,



Testing Bayesian predictions

¢ How do we split the data into a training and a test set?

Proposition: do leave-one-out cross validation and compute
N
elpd, ), = Z log p(y; | y_i)
i=1
Recall

pOy; 1 y_) = J p(y; | 0) p(@ |y, do.
®



Summary

prediction error based on “best” prediction: (y,,1 — 5)°.
point-wise log predictive score: p-Ipd = log p(y,,41 | 0)

expected log predictive score: elpd = log p(y,,.1 | Ytra)

N
loo-CV: elpdlo() = Z logp(y; | v_)).
i=1



¢ How do we estimate elpd; , , ethciently?

Y. Pareto-smoothed importance sampling (PSIS),* using the R package 1oo.

" Which measurement model 1s better for the influenza data?

Poison: elp_loo = —-82.5% 11
NegBn: elp_loo = -64.0x5.1

* @ Vehtari et al. Practical bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and Computing 2024



Question: for the SIR model, do we get better predictions with
the Poisson or the negative binomial likelihood?

300

400

300

200

cases

100

100

days 5 10

days

Poisson Likelihood Negative Binomial Likelihood
elp_loo =—-825%11 elp_loo = —-64.0£5.1
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What we covered

Bayesian statistics:
e specity model via p(6,y) = p(y | 6) p(6)
* estimate unknowns using posterior p(@ | y)

Markov chain Monte Carlo:

e oeneral purpose method to draw from p(@ | y)
 computationally expensive!

e efhcient implementation in: Stan, PyM(, lTensorklow Prob, ...

Bayesian worktlow:

e 15 the interence relhiable?

e 1s the fitted model reliable?

* 15 our uncertainty well-calibrated?



What we didn’t cover

Modeling techniques:

* prior specification/checking

* hierarchical models: population models,
(Gaussian processes, spatial models, ...

Computation:

e detailed discussion of Hamiltonian Monte Carlo
 Approximate inference, e.g. variational inference
e FKithcient algorithms on GPUs

e More ways to check reliability of inference



Where can I learn more?

7 Bayesian Workflow. Gelman et al. arXiw:2011.01808
(textbook 1n progress)

B For how many iterations should we run MCMC?
Margossian and Gelman. Handbook of MCMUC 2nd edition (in press)

B A conceptual introduction to Hamiltonian Monte Carlo

Betancourt. arXw:1701.02454

B Variational inference: a review for statisticians. Blei et al.
Journal of the American Statistician

9 Statistical Rethinking. McElreath

B Stan documentation. https://mc-stan.org/docs/

® hLitps://charlesm93.github.io/


https://arxiv.org/abs/1701.02434

