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Contributions
• Even with parallelization, adding more chains can reduce the efficiency of MCMC, because we

always wait for the slowest chain to finish.
• We propose instead to only wait for the fastest chains.

Details of the experiment

• We fit the model using Stan's Hamiltonian Monte Carlo, with 500
warmup and 500 sampling iterations. Convergence of the chains is
evaluated using 𝑅.

• The ODE is solved using a Runge-Kutta 4th/5th order integrator (RK 45).
Using the more conservative backward differentiation (BDF)
integrator leads to a slower average runtime but more stable
behavior. RK45 is usually more efficient to solve non-stiff ODEs
whereas BDF is faster for stiff ones. A stiff ODE is unstable numerically
when a small perturbation is applied to its parameters.

• In this model we use weakly informative priors and over-dispersed
initializations. Stronger priors (if available) and better initialization
can stabilize the chains.

Observation
The probability of having a « lagging » chain increases with the total 

number of chains. 

Figure 2. Runtime of 30 Markov chains when fitting the Michaelis-Menten
model in Stan [3]. A Runge-Kutta 4th/5th order integrator is used to solve the
model's ODE and evaluate the likelihood. While some chains finish in seconds,
others require more than an hour. Additional analysis finds that all chains are
converging to the same distribution (Figure 5.).

Figure 3. Efficiency of MCMC as measured by ESS/s. Adding more chains
improves the ESS. However, waiting for the slowest chain to finish can
reduce the overall ESS/s resulting in a lost in efficiency. The maximum
Efficiency is obtained after the 13 fastest chains finished, out of 30.

Discussion

• An open question is to understand what bias does dropping chains
introduce? See the discussion by Rosenthal (2000) [6] on failing chains.

• In our example, slow chains get stuck in pathological regions of the
parameter space with no probability mass and dropping these chains
doesn't incur a bias (Figure 5); for another example, see [7]. Still, we can't
expect this to always be true.

• Developing reliable convergence diagnostics and using unbiased Monte
Carlo methods [8, 9, 10] may provide a solution.

Figure 5. Posterior distribution of the standard MCMC
run for 30 chains in parallel and the racing-chains MCMC
coming from the chain stacking of the fastest chains. The
parameters drawn are those of the Michaelis-Menten,
and “lp__” describes the unnormalized log posterior of
the observations.

Waiting for the slowest chains

Case study: ODE-based models

• Models in pharmacometrics integrate a scientific model inside a
statistical model.

• The likelihood is parametrized by the solution to an ODE, motivated by
a biological model [1].

• In this poster, we will focus on the Michaelis-Menten Model [2].
• Depending on where we are in the parameter space (Figure 1.)

Solving ODEs can be numerically challenging and take an excessive
amount of time.

• This results in chains with wildly heterogeneous runtimes (Figure 2.),
and a diminished return in efficiency when running many chains and
waiting for the slowest chain to finish (Figure 3.).

Figure 4. Racing-Chains MCMC. We sample chains in parallel. Each time a chain finishes, we
realize a mixture sampling draw via chain stacking [4]. We assess the ESS of this draw and check
its reliability through a Pareto-k diagnostic [5]. Finally, if the draw is satisfying, we keep it and
drop the other chains.

Chain stacking [4] - principle

• The idea of chain stacking is to use parallel chains to explore as
many modes as possible and then construct a stacked inference. The
weights between the chains are found by maximizing the leave-one-
out log predictive density (lpdloo).

• From the sampling of the chains, we can build a mixture draw
according to their respective weights and estimate its Effective
Sample Size. Its convergence to posterior distribution is monitored
by the stability of lpdloo seen as a function of the number of chains in
parallel.

• In our case, stacking is necessary as some chains may finish quickly
but have low likelihood. A uniform draw will thus induce a bias. This
is especially the case for very wide priors, and the sampler can not
draw a Markov chain.

Chain Stacking

Drop last Chains

Mixture Draw
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Waiting for the fastest chains

(a) Standard 
MCMC

(b) Standard 
MCMC

(c) Racing-
chains

(d) Racing-chains + 
stacking

Chains 30 9 30 (9 kept) 9

Running time (s) 4918 775 145 145

Effective Sample
Size

2728 1172 966 1107

Efficiency (ESS/s) 0.55 1.51 6.66 7.63

Table 1. Comparison of sampling methods: (a) 30 chains in parallel. (b)
Another draw launching 9 chains in parallel. (c) Keep only 9 fastest
chains out of 30. (d) Keep only the fastest chains for which their stacking
verifies ESS > ESStarget = 1000. Keeping only the fastest chains reduces
computational time and increase the method’s efficiency.

Figure 1. [2] Evolution of 2 chains (orange
and black dots) across the parameter space.
The ODE behavior varies across the space,
and it can be stiff or non-stiff depending on
its location. The blue ellipsoid represents the
sampling region, where the posterior
probability mass concentrates.
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