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Bayesian inference for Latent Gaussian models

Latent Gaussian models (LGMs) are a key class of Bayesian hierarchical
models, which observe the following structure:

φ ∼π(φ), θ ∼Normal(0, K (φ)), y ∼π(y | θ ,φ),

where K is a covariance matrix parameterized by φ. We call φ the hyperpa-
rameter and θ the latent Gaussian variable. Our goal is to do full Bayesian
inference on φ and θ .

Applications. LGMs encompass a broad range of models with distinct be-
haviors. Gaussian processes for instance typically have a large dimensional
θ and a low dimensional φ (e.g. [4, 3]). In other models, φ is high dimen-
sional too and π(φ | y ) is multimodal. This is notably the case for general
linear models (GLM) with a sparsity inducing horseshoe prior (e.g. [2]) and
sparse kernel interaction models (SKIM) [1]. These models are particularly
useful in regimes where we have a large number of covariates, for example
in genomics.

Bayesian inference. Performing Bayesian inference on LGMs can be chal-
lenging because of the posterior’s geometry. The interaction between θ and
φ often generates highly varying curvatures, which frustrate Markov chains
Monte Carlo (MCMC) algorithms. Instead of running MCMC on the joint,
π(θ ,φ | y ), we can use the geometrically better behaved marginal distribu-
tion,

π(φ | y ) ∝ π(φ)π(y |φ) = π(φ)
∫

Θ

π(y ,θ |φ)dθ ,

to sample φ and then draw exact samples from π(θ | φ, y ). In most cases,
no analytical expressions exist for π(y | φ) and π(θ | φ, y ), so we resort
to a Laplace approximation: a normal distribution which matches the mode
and curvature of π(θ |φ, y ). For several modern problems, π(φ | y ) is high-
dimensional and multimodal. To efficiently sample the hyperparameters, we
deploy dynamic Hamiltonian Monte Carlo (HMC), a gradient-based MCMC
sampler, which requires the derivative ∇φ logπ(y | φ). Our main contribu-
tion is a novel, scalable method to differentiate the log marginal likelihood.

Main Contribution: Adjoint method for scalable differentiation
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We build on the algorithmic work by Rasmussen & Williams (2006) [3], who use a custom Newton solver
to approximate and differentiate logπ(y |φ). This differentiation method requires users to pass
K ′= ∂ K /∂ φ. When analytical derivatives are not available, we can resort to automatic differentiation to
construct K ′. In general, this method scales very poorly when the dimension of φ increases.

Adjoint method. We derive a novel differentiation algorithm which bypasses altogether the computation
of K ′, by directly evaluating the cotangent-Jacobian product w T K ′ for the appropriate cotangent, w T .
The superior scalability of this approach is demonstrated on the SKIM (see left).

Implementation. We build the adjoint method in C++ for an expandable suite of observational models.
The code is interfaced with the probabilistic framework Stan. Hence it straightforward to couple dynamic
HMC with the adjoint-differentiated Laplace approximation. The code used in the article can be found at
https://github.com/charlesm93/laplace_manuscript.

Numerical Experiment

We test our marginalization scheme on classic and cutting-edge problems.
Our benchmarks include (i) full HMC run over π(θ ,φ | y ) and (ii) automatic
differentiation variational inference (ADVI). ADVI is strongly biased, while full
HMC requires extensive tuning. For clarity most of the analysis on ADVI is
relegated to the Supplementary Material.

Gaussian process with a Poisson observational model.
dim(φ) = 2, dim(θ ) = 100.
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Both samplers are in close agreement. The approximation is about an order
of magnitude faster. What is more, two attempts at fitting the model were
required in order to tune full HMC.

GLM with a regularized horseshoe prior and Bernoulli observations.
dim(φ) = 5, 966, dim(θ ) = 102.
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We study the probability of developing prostate cancer based on genetic data.
The model identifies explanatory covariates, which produce a heavy-tailed
and at times multimodal posterior of the hyperparameter λ. The 90th quan-
tile of logλ serves as a soft selection criterion.

Extensive tuning is required in order to run
full HMC: it took us more than 4 attempts,
each taking several hours to run! By
contrast, the embedded Laplace runs
smoothly, indicating the geometry of
π(φ | y ) is much better behaved than the
geometry of π(φ,θ | y ). We however note
that the approximation introduces a bias,
which is expected when the observational
model is Bernoulli. Still, the accuracy is
comparable for several quantities of interest.
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(full) HMC 2586 1816 4960 4238 4843 3381
HMC + Laplace 2586 1816 4960 4647 4238 3381
ADVI 1816 2416 4284 2586 5279 4940

Top six covariate indices, i , with the highest 90th quantiles of logλi

Sparse Kernel Interaction Model. The SKIM expands the GLM with a horse-
shoe prior by accounting for interaction effects. To achieve scalability, the
GLM is recast as a Gaussian process using a kernel trick. The results of our
experiment on this model are comparable to what we obtained with the GLM
and detailed in our article.
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