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Abstract
Latent Gaussian models are a common class of Bayesian hierarchical

models, characterized by a normally distributed local parameter. The pos-
terior distribution of such models often induces a geometry that frustrates
sampling algorithms, such as Stan’s Hamiltonian Monte Carlo (HMC),
resulting in an incomplete or slow exploration of the parameter space. To
alleviate these difficulties, we can marginalize out the normal local variables
and run HMC on a well-behaved subset of the parameters. Unfortunately,
exact marginalization is not possible in all but a few simple cases. It is
however possible to do an approximate marginalization, using an embedded
Laplace approximation. We introduce a prototype suite of Stan functions
that support this approximation scheme, and demonstrate the method on
a Gaussian process disease map and a sparse kernel interaction model.
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Introduction
Latent Gaussian models are a class of hierarchical models that put a normal
prior on the latent variable. Their general form is

φ ∼ π(φ),
θ ∼ Normal(0,K(φ)),
y ∼ π(y | θ, φ),

(1)

where y denotes the observations, θ the latent variable, and φ the remaining
unobserved variables in the model. Bearing a slight abuse of language, we will
call φ the hyperparameters. Typically, single observations yi are independently
distributed and only depend on a linear combination of the latent variables, that is
π(yi | θ, φ) = π(yi | aTi θ, φ) for some appropriate vector a. In many applications,
θj denotes a group parameter that informs the distribution of observations in
group j. Latent Gaussian models find a broad range of applications; and because
of their normal prior are subject to convenient mathematical manipulations that
can improve Bayesian inference.

Markov chains Monte Carlo (MCMC) sampling can struggle with the geometry
induced by such models, for instance when dealing with funnel shapes, and more
generally high curvature densities (Neal 2003; Betancourt and Girolami 2013).
Much of the geometric grief we experience comes from the interaction between φ
and θ.

An alternative approach to MCMC is to marginalize out θ,

π(y | φ) =
∫
π(y | θ, φ)dθ,

and perform standard inference on φ. If the likelihood, π(y | θ, φ), is non-
Gaussian, exact marginalization is not possible. Instead, we can use an embedded
Laplace approximation, and compute an approximate marginal distribution,
πG(y | φ). This is the driving principle behind the packages INLA (Rue et
al. 2017; Rue and Chopin 2009), GPStuff (Vanhatalo et al. 2013), and TMB
(Kristensen et al. 2016). We now incorporate these ideas in Stan, notably
building on the algorithmic work by Rasmussen and Williams (2006).

Why Stan? To perform inference on φ, we want to use Stan’s dynamic HMC,
as opposed to more standard techniques, such as numeric quadrature. This
allows us to tackle the case where φ is high-dimensional and has a non-unimodal
posterior distribution.

Embedding the Laplace approximation inside Stan’s architecture presents several
technical challenges. Anecdotally, our first implementation of the Laplace
approximation took ∼ 2,000 seconds to evaluate and differentiate the approximate
log marginal density (for a certain test problem). The current implementation
performs the same task in ∼ 0.1 second. The main technical innovation of
our implementation is an adjoint-differentiation method, which can handle any
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covariance matrix, K, and scales when φ is high-dimensional (Margossian et al.
2020).

Installation

The functions we use in this notebook are prototypes and currently not part of
Stan’s release version. In order to use them, we must first install the correct
branch of Stan. On Mac, this can be done by running the install.sh script, in
the script directory, from a terminal window:

cd script
./install.sh

The script produces a CmdStan and a Stanc3 folder with all the requisite code. It
does not install RStan or PyStan. Instead, we will use CmdStanR, a lightweight
wrapper for CmdStan, in order to interface Stan with R.

R setup

The full R code can be found in script/run_models.r.
set.seed(1954)
.libPaths("~/Rlib") # Adjust to your setting!
library(parallel)
library(rstan) # Use to read in data and for post-hoc analysis.
library(cmdstanr) # Use to compile and fit the model.
# Set the path to the cmdstan directory installed with install.sh
set_cmdstan_path("script/cmdstan")
library(ggplot2)

Gaussian variables (hiding in the wild)
To begin, let us examine two examples of a latent Gaussian model.

Example 1: sparse linear regression

Consider the following linear regression model

φ ∼ π(φ),
β ∼ Normal(0,Σ(φ))
y ∼ π(y | Xβ),

where X is a design matrix and β the regression coefficients. The prior on β may,
for example, be a sparsity inducing prior. The above data generating process has
a latent Gaussian model structure. Observe that each observation yi depends on
a linear combination of the latent variables,

∑
j xijβj .
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We can reformulate this model by introducing another latent Gaussian variable,
θ = Xβ. Now, yi only depends on θi, and the model is

φ ∼ π(φ),
θ ∼ Normal(0, XΣ(φ)XT ),
y ∼ π(y | θ).

Both formulations are of interest. The first one is more natural, and emphasizes
β, presumably a variable of interest. The benefit of the second formulation is
mostly technical: the likelihood π(y | θ), as well as its higher-order derivatives,
are easier to manipulate.

Example 2: Gaussian process

The θ’s in equation (1) can be the realizations of a Gaussian process – a non-
parametric function –, which then inform the observational distribution of y.
For an introduction to the subject in Stan, see Trangucci (2017) and Betancourt
(2017). Quite remarkably, to model a Gaussian process, it suffices to study a
finite number of realizations, which follow a normal distribution

θ ∼ Normal(0,K(φ)).

Roughly speaking, the covariance, K, controls how quickly and how much the
Gaussian process varies. A classic example for K is the squared exponential
kernel, with (i, j)th element defined as

Kij = α2 exp
(
−||xi − xj ||

2

ρ2

)
where xi designates the coordinate of observation yi. In certain applications, K
takes a much less trivial form, e.g. (Agrawal et al. 2019). The hyperparameter in
this example comprises α and ρ, for which we can construct appropriate priors.

Typically, π(yi | θ, φ) = π(yi | θi, φ), meaning that for each observation, the
model includes a latent variable. There is no formal constraint on the likelihood.
Some examples:

(i) π(yi | θi, φ) = Normal(θi, σ2)
(ii) π(yi | θi, φ) = Poisson (exp θi)
(iii) π(yi | θi, φ) = Bernoulli(logitθi)

Tools for Bayesian inference
Our goal is to characterize the posterior distribution

π(θ, φ | y).

A tool of choice is Markov chains Monte Carlo (MCMC), and in particular the
dynamic Hamiltonian Monte Carlo (HMC) sampler provided by Stan (Betancourt
2018; Hoffman and Gelman 2014).
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MCMC has been widely successful in this setting but there are nevertheless
known challenges when fitting multilevel models. The interaction between φ and
θ can indeed create complicated geometries, such as funnel shapes. When the
Markov chain cannot overcome these geometric pathologies, we observe divergent
transitions, indicating our inference may be bias. We can often bypass these
issues by reparameterizing the model and fine-tuning HMC. But this process
can be cumbersome, especially when working on computationally intensive
models. Finding an acceptable parameterization and properly tuning HMC
usually requires multiple fits, and the burden is that much more important when
each fit takes several hours. One example is the prostate cancer classification
model discussed by (Piironen and Vehtari 2017) and (Margossian et al. 2020).

Given much of our geometric grief comes from the interaction between θ and
φ, it stands to reason that we may alleviate these issues by marginalizing out θ
and computing

π(φ | y) =
∫
π(θ, φ | y)dθ.

We can then run MCMC, or any standard inference technique, on φ. It is
furthermore possible to recover samples for θ, if we can construct the conditional
distribution

π(θ | φ, y).

Unfortunately, in all but a few simple cases we cannot calculate π(φ | y) and
π(θ | φ, y). However, exploiting the fact θ has a normal prior, we can approximate
these distributions using a Laplace approximation.

Exact Marginalization

Let us now return to the Gaussian process we previously introduced. Suppose
that the observational distribution is normal, with the yi’s independent and each
only depending on θi. That is

π(θ | φ) = Normal(0,K(φ)),
π(y | θ, φ) = Normal(θ, σ2I),

where I is the identity matrix. Then

π(yi | φ) = Normal(0,K(φ) + σ2I).

Using an argument of conjugacy,

π(θ | y, φ) = Normal
((

K−1 + n

σ2 I
)−1 1

σ2 y,
(
K−1 + n

σ2 I
)−1

)
.

These equations motivate the following approach to fit these models in Stan.

1. run HMC on φ, by encoding π(φ) and π(y | φ) in the model block.
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2. in generated quantities, sample θ from π(θ | y, φ).

Efficient Stan code for this procedure can be found in the case study by Betancourt
(2017).

What have we gain from doing this? The main benefit is that MCMC now only
explores the parameter space of φ, which is geometrically better behaved. In
some instances, dim(φ)� dim(θ), and the Monte Carlo problem becomes low
dimensional, which can lead to an important speed up. Note that, when fitting
this model, the computation is dominated by evaluation and differentiation
of log π(y | φ) + log π(φ), which takes place several times per iteration. The
sampling of θ, which requires no differentiation and only occurs once per iteration,
is by comparison relatively cheap.

Approximate marginalization

Suppose now that the likelihood is not normal. For example it may be a Poisson
log, meaning

π(yi | θ, φ) = Poisson(exp θi). (2)

We no longer have an analytical expression for π(y | θ) and π(θ | φ, y). We can
however approximate both using the Laplace approximation

πG(θ | φ, y) ≈ π(θ | φ, y).

The density on the left-hand side is a normal density that matches the mode, θ∗,
and the curvature of the density of π(θ | φ, y). We numerically determine the
mode using a Newton solver; the curvature itself is the negative Hessian of the
log density. We then have

πG(φ | y) := π(φ)π(θ∗ | φ)π(y | θ∗, φ)
πG(θ∗ | φ, y)π(y) ≈ π(φ | y).

Note that, as usual with MCMC, we do not have to compute the normalizing
term, 1/π(y). Equipped with this approximation, we can repeat the previously
described sampling scheme.

But we now need to worry about the error this approximation introduces. When
the likelihood is log-concave, π(θ | φ, y) is guaranteed to be unimodal. Some
common densities that are log-concave include the normal, Poisson, binomial, and
negative binomial densities, and in those instances the approximation is found to
be very accurate. The Bernoulli distribution also observes log-concavity but it is
understood that the approximation introduces a bias. Detailed analysis of the
error can be found in references (e.g. Kuss and Rasmussen (2005), Vanhatalo,
Pietiläinen, and Vehtari (2010), Cseke and Heskes (2011), Vehtari et al. (2016)).
Evaluating the accuracy of the approximation for less traditional likelihoods
constitutes a challenging and important avenue for future research.
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Prototype Stan code
To enable the above scheme, we propose a new routine in Stan, which includes
functions to compute log πG(y | φ) and sample from πG(θ | φ, y).

The general form of the function is

• laplace_marginal_*, which returns log πG(y | φ), where * is the name
of the desired observational distribution, followed by lpmf for discrete
observations and lpdf for continuous ones.

• laplace_*_rng, which samples θ from πG(θ | φ, y).

A use of the first function in the model block may look as follows

target += laplace_marginal_*(y | n, K, phi, x, delta, delta_int, theta0);

In lieu of *, the user can specify an observational density by picking from a list
of common likelihoods. y and n are sufficient statistics for the latent Gaussian
variable θ. K is a function that returns the covariance matrix and takes in phi, x,
delta, and delta_int as arguments. theta_0 is the initial guess for the Newton
solver we use to find the mode of π(θ | φ, y). In practice, setting theta_0 to a
vector of 0’s works reasonably well.

The laplace_*_rng functions take in the same arguments and returns a vector.

Picking the likelihood

We plan to develop the Laplace functions for a set of common likelihoods.
Currently the options are the Poisson with a log link and the Bernoulli with a
logit link. For these functions, the sufficient statistics are

• y:
∑
i∈g(i) yi, the sum of counts / successes in a group, parameterized by

θi.
• n:

∑
i∈g(i) 1, the number elements in a group parameterized by θi.

Our aim is to make the routine more flexible and allow the user to specify their
own likelihood, but this presents two challenges: (i) the approximation may
introduce a large error which we cannot diagnose, and (ii) insuring efficient
computation in this set up presents technical challenges. For more, see the
discussion in Margossian et al. (2020).

Specifying the covariance matrix

The user has full control over which covariance matrix they use. One of the
technical innovation in our implementation is to support this flexibility while
retaining computational efficiency, particularly as the dimension of φ increases.

K is declared in the functions block and must of have one of two signatures:

matrix K(vector phi, matrix x, real[] delta, int[] delta_int) { }
matrix K(vector phi, vector[] x, real[] delta, int[] delta_int) { }
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phi contains the parameter dependent variables (and informs which derivatives
we compute when running HMC). The other arguments encompass real data
required to compute K, very much in the spirit of Stan’s numerical integrators
and algebraic solvers. There are devices to “pack and unpack” the relevant
variables. In future prototypes, this will be replaced with variadic arguments.

For example, the squared exponential kernel can be encoded as follows:

functions {
matrix K (vector phi, vector[] x, real[] delta, int[] delta_int) {

real alpha = phi[1];
real rho = phi[2];
return add_diag(cov_exp_quad(x, alpha, rho), 1e-8);

}
}

Note that we added a jitter term of 1e-8 along the diagonal of K for numerical
stability.

Disease map of Finland
The disease map of Finland by Vanhatalo, Pietiläinen, and Vehtari (2010),
models the mortality count, due to alcoholism, across the country. The data
is aggregated into n = 911 counties. For computational convenience, we use
nobs = 100 randomly sampled counties. As data we have x, the spatial coordinate
of each county, y, the count of deaths and ye, the standardized expected number
of deaths.

Building the model

We start with the data block:

data {
int n_obs; // number of counties
int n_coordinates; // number of spatial dimension
int y[n_obs]; // death counts in each county
vector[n_obs] ye; // standardized expected number of deaths
vector[n_coordinates] x[n_obs]; // coordinates for each county.

}

The disease is modeled using a Gaussian process and for each county we assign
a latent realization of the process, θi. The likelihood is log Poisson, with an
adjustment to the mean,

π(yi | θ) = Poisson
(
yiee

θi
)
.

The Gaussian process itself is governed by a squared exponential kernel, with
two hyper parameters: α and ρ. Our plan is to marginalize θ out, so we only
sample α and ρ with HMC.
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parameters {
real<lower = 0> alpha;
real<lower = 0> rho;

}

In the model block, we specify our priors on α and ρ, which will be inverse-
Gamma, and we increment the target density with the approximate marginal
density, log πG(y | α, ρ).

model {
rho ~ inv_gamma(rho_location_prior, rho_scale_prior);
alpha ~ inv_gamma(alpha_location_prior, alpha_scale_prior);

target += laplace_marginal_poisson_log_lpmf(y | n_samples, ye, K,
phi, x, delta, delta_int, theta_0);

}

Note that the function allows the user to pass ye as an additional argument.
We now need to fill in some gaps. The location and scale parameters for the
priors on ρ and α can be passed as data. K is specified in the functions block.
In the transformed data and transformed parameters block, we specify the
remaining arguments of laplace_marginal_log_poisson.

transformed data {
vector[n_obs] theta_0 = rep_vector(0, n_obs); // initial guess
real delta[0]; // dummy argument
int delta_int[0]; // dummy argument
int n_samples[n_obs] = rep_array(1, n_obs); // observations per counties
int n_phi = 2; // size of phi

}

. . .

transformed parameters {
vector[n_phi] phi = to_vector({alpha, rho});

}

Finally, we generate posterior samples for θ post-hoc.

generated quantities {
vector[n_obs] theta

= laplace_poisson_log_rng(y, n_samples, ye, K,
phi, x, delta, delta_int, theta_0);

}

The full Stan model can be found in model/disease_map_ela.stan.
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Fitting the model in R

# Read in data for 100 randomly sampled counties
data <- read_rdump("script/data/disease_100.data.r")

# Compile and fit the model with CmdStanR
modelName <- "disease_map_ela.stan"
mod <- cmdstan_model(paste0("script/model/", modelName))

num_chains <- 4
num_cores <- min(num_chains, detectCores())
fit <- mod$sample(

data = data, chains = num_chains, parallel_chains = num_cores,
iter_warmup = 1000, iter_sampling = 1000, seed = 123, refresh = 0)

## Running MCMC with 4 parallel chains...
##
## Chain 2 finished in 18.7 seconds.
## Chain 3 finished in 19.4 seconds.
## Chain 1 finished in 19.9 seconds.
## Chain 4 finished in 20.3 seconds.
##
## All 4 chains finished successfully.
## Mean chain execution time: 19.6 seconds.
## Total execution time: 20.4 seconds.

There are no warning messages. Let’s examine a summary of our fit for certain
parameters of interest.
fit$summary(c("lp__", "alpha", "rho", "theta[1]", "theta[2]"))

## # A tibble: 5 x 10
## variable mean median sd mad q5 q95 rhat ess_bulk
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 lp__ -3.46e+2 -3.46e+2 1.07 0.816 -3.48e+2 -3.45e+2 1.00 1283.
## 2 alpha 7.28e-1 6.95e-1 0.207 0.178 4.56e-1 1.10e+0 1.00 1754.
## 3 rho 2.02e+1 1.76e+1 10.0 6.00 1.05e+1 3.91e+1 1.00 1583.
## 4 theta[1] -9.17e-2 -9.08e-2 0.0245 0.0236 -1.32e-1 -5.27e-2 1.00 4041.
## 5 theta[2] 2.22e-1 2.21e-1 0.0793 0.0734 9.20e-2 3.48e-1 1.00 3909.
## # ... with 1 more variable: ess_tail <dbl>

For the examined parameters, R̂ < 1.01, and the effective sample sizes (ess_bulk
and ess_tail) are large. We may do further checks, such as examine the trace
and density plots, to make sure our inference is reliable.

There are several ways to inspect the results and for a more detailed analysis, we
refer the reader to Vanhatalo, Pietiläinen, and Vehtari (2010). In this notebook,
we simply plot the mean Poisson log parameter, θ, for each county.
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theta_mean <- fit$summary()[6:105, 2]$mean

plot_data <- data.frame(x1 = data$x[, 1],
x2 = data$x[, 2],
theta_mean = theta_mean)

plot <- ggplot(data = plot_data,
aes(x = x1, y = x2, color = theta_mean)) +

geom_point() + theme_bw() +
scale_color_gradient2(low = "black", mid = "blue", high = "red")

plot
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This plot highlights regions which, per our analysis, are more at risk. There
are several limitations worth pointing out. First we only used 100 counties, so
the resolution is limited. It is of course possible to run the analysis on all 911
counties and get more fine-grained results. Secondly, this plot does not capture
the posterior variance of our estimates. Including this information in a map is
tricky, but strategies exist (e.g. use multiple maps).

Comparison to inference on the exact model

It is possible to fit this model without marginalizing θ out. To do this, we must
include θ in the parameters block, and revise the models block to explicitly
encode the full data generating process. The Markov chain must now explore
the full parameter space, (α, ρ, θ). We will refer to this approach as full HMC.
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The geometry of the posterior can be challenging for full HMC, a problem
we diagnose with divergent transitions. To remove these issues, we can use a
non-centered parameterization and increase the target step size, δa (argument
adapt_delta in the sample method) from its default 0.8 to 0.99. The relevant
changes in the model look as follows.

parameters {
real<lower = 0> alpha;
real<lower = 0> rho;
vector[n_obs] eta;

}

transformed parameters {
vector[n_obs] theta;
{

matrix[n_obs, n_obs] L_Sigma;
matrix[n_obs, n_obs] Sigma;
Sigma = cov_exp_quad(x, alpha, rho);
for (n in 1:n_obs) Sigma[n, n] = Sigma[n,n] + delta;
L_Sigma = cholesky_decompose(Sigma);
theta = L_Sigma * eta;

}
}

model {
rho ~ inv_gamma(rho_location_prior, rho_scale_prior);
alpha ~ inv_gamma(alpha_location_prior, alpha_scale_prior);

eta ~ normal(0, 1);
y ~ poisson_log(log(ye) + theta);

}

The full model is in model/disease_map.stan.

We find that both exact and approximate inference return posterior samples for
α, ρ, and θ, which are in close agreement (see Margossian et al. (2020)). This is
consistent with the literature, where the embedded Laplace approximation has
been shown to be very accurate for a Poisson log likelihood.
knitr::include_graphics("figures/gp_sample_comp.png")
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Much like in the case of a Gaussian likelihood, using approximate inference
presents two advantages: (i) it requires no reparameterization, nor any tuning of
Stan’s HMC; and (ii) even after the exact model has been properly tuned, the
approximate model runs much faster. Examining the effective sample size per
second, we find the benefit to be an order of magnitude.
knitr::include_graphics("figures/gp_eff_comp.png")
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Sparse kernel interaction model
In this next example, we examine a prostate cancer classification data set1. The
goal of the study is to identify predictors of the development of prostate cancer.
For each patient, d ≈ 6, 000 covariates are measured, and a binary variable
indicates whether or not the patient develops cancer. The data set includes
n = 102 patients.

Building the model

As a predictive model, we use a general linear regression model, with a Bernoulli
observational distribution. Let y be the observations, X the design matrix, β
the regression coefficients, and β0 the intercept term. Then

y ∼ Bernoulli (logit(β0 + Xβ)).

Even though d is very large, we believe only a small faction of the covariates
are relevant. To reflect this belief, we construct a regularized horseshoe prior
(Piironen and Vehtari 2017). This prior operates a soft selection, favoring βi ≈ 0
or βi ≈ β̂i, where β̂i is the maximum likelihood estimate. A local scale parameter,
λj , controls the shrinkage of βj (to be precise, a transformation of λj acts as
the regularizer; we denote this transformation λ̃j). There is also a global scale
parameter, τ , which regularizes unshrunk βs and operates a soft truncation of
the extreme tails. For details, we refer the reader to Piironen and Vehtari (2017)
and appendix E.2 of Margossian et al. (2020).

If we extend the above model to account for pairwise interactions between the
covariates, we obtain a sparse kernel interaction model (SKIM) (Agrawal et al.
2019). The priors on the coefficient is then the following:

η, λ̃, τ, c0 ∼ π(η)π(λ̃)π(τ)π(c0),
βi ∼ Normal(0, τ2λ̃2

i ),
βij ∼ Normal(0, η2

2λ̃
2
i λ̃

2
j ),

β0 ∼ Normal(0, c2
0),

where η2 regulates interaction terms and c0 the intercept.

With a large number of coefficients and an exponentially large number of inter-
action terms, this becomes a formidable model to fit! To improve computation,
Agrawal et al. (2019) propose a “kernel trick”, whereby we recast the model as
a Gaussian process. Let φ denote the hyperparameters. Then

φ ∼ π(φ),
f ∼ Normal(0,K(φ)),
yi ∼ Bernoulli(logitfi)).

1Available on http://featureselection.asu.edu/datasets.php.
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This time, the covariance matrix is rather intricate. We first compute intermedi-
ate values:

K1 = X diag(λ̃2) XT ,

K2 = [X ◦X] diag(λ̃2) [X ◦X]T ,

where “◦” denotes the element-wise Hadamard product. Then

K = 1
2η

2
2(K1 + 1) ◦ (K1 + 1)− 1

2η
2
2K2 − (τ2 − η2

2)K1

+c2
0 −

1
2η

2
2 .

For more details, see Agrawal et al. (2019) and Appendix E.3 of Margossian et
al. (2020).

As this is a Gaussian process, we can use the Laplace approximation to marginal-
ize out f . This time, the observational model is Bernoulli with a logit link.
Accordingly, we use

target += laplace_marginal_bernoulli_logit_lpmf(y | n_samples, K, ...);

The probability of developing cancer for each patient is estimated in the
generated quantities block:

vector[n] p = inv_logit(
laplace_bernoulli_logit_rng(y, n_samples, K, ...)
);

The full Stan code can be found in model/skim_logit_ela.stan.

Fitting the model in R

For computational convenience, we restrict our attention to only 200 covariates.
data <- read_rdump("script/data/prostate_200.data.r")

modelName <- "skim_logit_ela"
mod <- cmdstan_model(paste0("script/model/", modelName, ".stan"))

## Model executable is up to date!

To identify covariates which are softly selected, we examine the 90th quantile of
log λ. Estimates of extreme quantiles tend to have a large variance, hence it is
helpful to run a large number of samples.
# num_chains = 4
# num_cores = 4
# fit <- mod$sample(
# data = data, chains = num_chains,
# parallel_chains = num_cores,
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# iter_warmup = 1000, iter_sampling = 2000, seed = 123,
# refresh = 0
# )
# fit_laplace <- read_stan_csv(fit$output_files())

# For convenience, read in saved fit
modelName <- "skim_logit_ela"
fit_laplace <- readRDS(paste0("script/saved_fit/", modelName, ".RSave"))

As before, we examine a summary of the posterior draws for certain parameters
of interest.
pars = c("lp__", "eta_two", "tau", "lambda[1]", "lambda[2]")
summary(fit_laplace, pars = pars)[1]

## $summary
## mean se_mean sd 2.5% 25%
## lp__ -416.33828837 0.2589174216 12.980729963 -4.427790e+02 -4.248975e+02
## eta_two 0.00582577 0.0001096917 0.008695149 1.042964e-04 1.093525e-03
## tau 12.45151872 0.1146143609 8.429251147 1.953032e+00 6.389118e+00
## lambda[1] 6.10742691 1.3814246391 83.484050409 4.217087e-02 4.174565e-01
## lambda[2] 4.47762771 0.7661252360 63.871829019 3.942981e-02 4.156833e-01
## 50% 75% 97.5% n_eff Rhat
## lp__ -415.8905000 -4.073578e+02 -392.39685000 2513.481 1.0007699
## eta_two 0.0029547 6.993395e-03 0.02892288 6283.569 0.9999704
## tau 10.6513500 1.639575e+01 33.90038000 5408.787 0.9999637
## lambda[1] 1.0065250 2.392453e+00 25.04534500 3652.184 1.0002984
## lambda[2] 0.9709115 2.268203e+00 20.23611500 6950.550 1.0003059

To identify softly selected variables, we load two custom R functions from the
script tools.r.
source("script/tools.r")

# plot the 90th quantiles of all covariates.
quant = 0.9
lambda <- rstan::extract(fit_laplace, pars = c("lambda"))$lambda
log_lambda_laplace <- log(lambda)
quant_select_plot(log_lambda_laplace, quant, threshold = 2.4) +

ylab("90th quantile for \n log lambda")
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From this plot, it is clear that the 86th covariate is strongly selected. A handful
of other covariates also stand out.
# select the top 6 covariates
select_lambda(log_lambda_laplace, quant, n = 6)

## [1] 86 179 160 81 54 120

Comparison to inference on the exact model

As before, we can fit the model without marginalizing θ out. This requires
using a non-centered parameterization, and increasing δa (adapt_delta) in
order to remove divergent transitions. The Stan model can be found in
script/model/skim_logit.stan.

By contrast, the embedded Laplace approximation, with Stan’s default tuning
parameters, produces no warning messages. This indicates Stan’s HMC works
well on the approximate model. However, when using a Bernoulli observational
model, the approximation introduces a bias, which may be more or less important
depending on the quantity of interest.

To see the difference, we fit the model using full HMC.
# load saved rstan_fit
modelName <- "skim_logit"
fit_full <- readRDS(paste0("script/saved_fit/", modelName, ".RSave"))

As before, we inspect the 90th quantile of log λ to see which variables get softly
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selected.
log_lambda_full <- log(extract(fit_full, pars = c("lambda"))$lambda)

quant_select_plot2(log_lambda_full, log_lambda_laplace, quant, threshold = 2.4,
alpha = 0.5) +

ylab("90th quantile for \n log lambda")
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# select the top 6 covariates from the model fitted with full HMC
select_lambda(log_lambda_full, quant, n = 6)

## [1] 86 81 179 160 120 151

# select the top 6 covariates from the approximate model
select_lambda(log_lambda_laplace, quant, n = 6)

## [1] 86 179 160 81 54 120

There is disagreement between the estimated quantiles. This is both due to the
approximation bias and the usually high noise in estimates of extreme quantiles.
Still both models identify the relevant covariates, though they do not fully agree
about their order.

We can also compare the expected probability of developing cancer.
p_laplace <- colMeans(na.omit(extract(fit_laplace, pars = c("p"))$p))
p_full <- colMeans(na.omit(extract(fit_full, pars = c("p"))$p))

plot_data <- data.frame(p_full, p_laplace)
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plot <- ggplot(data = plot_data, aes(x = p_full, y = p_laplace)) +
geom_point(size = 1) + theme_bw() +
geom_abline(intercept = 0, slope = 1,

color = "red",
linetype = "dashed", size = 0.5) +

xlim(0, 1) + ylim(0, 1) + xlab("Probability (full HMC)") +
ylab("Probability (HMC + Laplace)") +
theme(text = element_text(size = 15))

plot
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From the literature, we expect the probability to be more conservative when
using the embedded Laplace approximation; nevertheless, the estimated proba-
bilities are in close agreement. The reader may find a more detailed analysis in
Margossian et al. (2020). In particular when examining the posterior distribution
of certain hyperparameters, the bias becomes more apparent.

The embedded Laplace approximation runs a bit faster than the well-tuned full
HMC for d = 200. When d increases, the difference becomes more important.
But for this example the main benefit of the approximation is to save user time,
rather than computation time.

Discussion
The routines presented here allow users to couple Stan’s dynamic HMC with an
embedded Laplace approximation.
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Is the approximation accurate? In this first example we treat – the disease
map with a Poisson log likelihood – we find the posterior samples to be in close
agreement with the ones generated by full HMC. This is expected for log concave
likelihoods, with, as a noteworthy exception, the Bernoulli distribution. In the
second example – the SKIM –, the approximation introduces a notable bias, but
retains accuracy for several quantities of interest. Our recommendation when
using this method is therefore: know your goals and proceed with caution.

The benefit of the embedded Laplace approximation is that, generally speaking,
the approximate model generates a posterior distribution with a well-behaved
geometry. This means we do not need to fine tune HMC, and in some cases, we
also get a dramatic speedup. One of the strengths of our implementation is that
it can accommodate any user-specified covariance matrix, K, and scales when
φ is high-dimensional. The method will further benefit from high-performance
routines, that exploit matrix sparsity, GPUs, and parallelization.

The embedded Laplace approximation does however not give the user as much
flexibility as one might desire. Indeed, the user can currently not specify an
arbitrary likelihood, π(y | θ, φ), and this for two reasons: (i) to realistically use the
embedded Laplace approximation we need an efficient method to propagate third-
order derivatives through log π(y | θ, φ), and (ii) given the approximation may
not be accurate for an arbitrary likelihood, the method must be complemented
with reliable diagnostics. Future work will investigate how to overcome these
challenges and build a more general approximation scheme.
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