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Bayesian inference with Hamiltonian Monte Carlo

Figure 1. As the Markov chains (orange and black dots) move across the parameter space, the behavior
of the ODE may change. The elliptical blue band represents the sampling region, i.e. the region where
the posterior probability mass concentrates. Three hypothetical cases for how the ODE may behave.

Hamiltonian Monte Carlo. Given observations, y , and parameters, θ , our goal is to characterize the
posterior distribution p (θ | y ). We focus on pharmacometrics models, for which the likelihood p (y | θ )
uses an ODE. Dynamic Hamiltonian Monte Carlo (HMC) is a state-of-the-art Markov chains Monte Carlo
method which draws approximate samples from p (θ | y ) [1]. Effective sampling crucially depends on
properly tuning HMC’s sampling parameters during a warmup phase.

Warmup phases of dynamic HMC (e.g. for 500 iterations) and prototype Path Finder.

Adaptive HMC Prototype Path finder
I • starting at initialization, θ0, early exploration • Construct optimization path between

(75 iter) with highly varying θ . θ0 and the mode of p (θ | y ).
• convergence to sampling region. • Find sampling region along path and
• initial tuning of the sampling parameters. initialize HMC Phase I.

II • semi-stable exploration of sampling region. • Use variational approx. of p (θ | y )
(375 iter) • more extensive tuning of sampling parameters, to tune sampling parameters.

as we learn more about p (θ | y ). • OR use Phase II of HMC.
III • continued exploration of the sampling region. • Use HMC’s Phase III.

(50 iter) • final tuning of sampling parameters.

Challenge. As θ changes, so can the behavior
of the ODE in our model (Figure 1).

Pathfinder [3]. The pathfinder offers alternative
options for warming up HMC by (i) improving ini-
tialization and (ii) estimating certain sampling pa-
rameters. (Figure 2) Figure 2.

Behavior of ODE-based models during HMC sampling

Michaelis-Menten PK model. Consider a simple non-linear PK model:

y ′0 = −ka y0

y ′1 = k a y0−
Vm C

Km +C
,

where C = y1/V is the drug concentration in
a central compartment. The patient is adminis-
tered a single dose and the drug concentration
cobs is measured over time.

The full model, with parameters θ = {ka , V , Vm , Km ,σ}, is

ka ∼ logNormal(log(2.5), 3); V ∼ logNormal(log(35), 0.5); Vm ∼ logNormal(log(10), 0.5);
Km ∼ logNormal(log(2.5), 3); σ∼Normal+(0, 1); cobs∼Normal(C ,σ).

Which ODE integrator should we use?
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Figure 2. Model runtimes using a stiff backward differentiation (BDF) integrator and a non-stiff Runge-
Kutta 4th/5th (RK45) integrator. For each integrator we run 8 HMC chains (500 warmup + 500 sampling
iterations) using Stan [2].

Combining different integrators. A robust integrator may be necessary during the warmup, but overkill
when sampling. Applying this heuristic, we propose the following schemes:

Pathfinding Phase I Phase II Phase III Sampling

HMC warmup, early switch NA BDF RK45 RK45 RK45

HMC warmup, late switch NA BDF BDF RK45 RK45

Pathfinder, RK45 BDF RK45 RK45 RK45 RK45

Pathfinder, late switch BDF BDF BDF RK45 RK45

Pathfinder, approx. tuning BDF NA NA RK45 RK45

Performance Study

We run all five proposed sampling schemes, as well as HMC using only RK45 or BDF on the Michaelis-
Menten model and a population version of it. The inference they produce are all in agreement.
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Figure 3. Relaxation time, i.e. time to increase the effective sample size by 1, measured for log p (θ , y ).
The orange crossed dot is the median time, and the red circled dot the worst time. For method which run
8 or more chains in parallel, we may prefer consistency to good median performance.

Model details. The population model uses 3 patients, with partial pooling. We tried a centered and
non-centered parameterization, and reported the former which for this particular problem produced more
effective sampling. We also found adapting a dense mass matrix for HMC worked better than using the
default diagonal mass matrix. The population uses 1,000 warmup and 1,000 sampling iterations.

Results. • For the single patient model, using BDF during the warmup phase improves the stability of
the sampler. Improved initialization do not warrant the additional cost of running the pathfinder; however
estimating tuning parameters based on the variational approximation produces the most efficient sampler.
Improved implementation can further increase the benefits of the pathfinder.
• For the population model, we suspect the additional data stabilizes the posterior distribution, making

uniform RK45 the best option. For this model, running the pathfinder is expansive and the estimated
tuning parameter is suboptimal (we can diagnose this with the Pareto smooth importance sampling [3]).
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