
Assessing the Convergence of Markov chain Monte
Carlo when running many short chains
Charles C. Margossian1, Matthew D. Hoffman2, Pavel Sountsov2, Lionel Riou-Durand3, Aki Vehtari4 and Andrew Gelman5
1Center for Computational Mathematics, Flatiron Institute, USA; 2Google Research, USA; 3Department of Statistics, University of Warwick, UK;
4Department of Computer Science, Aalto University, Finland; 5Department of Statistics and Political Science, Columbia University, USA.

“All human wisdom is contained in these two words: wait and hope.”
— Alexandre Dumas, The Count of Monte Cristo

The goal of this work is to wait less and not rely too much on hope.

Contributions:
• Nested-R̂: a generalization of R̂ to diagnose convergence in the many-short-
chains regime.

• An asymptotic analysis of R̂ and nR̂ for non-stationary chains.

The many-short-chains regime

MCMC runs in two phases:
1. A warmup phase, made ofW iterations, to reduce the bias.
2. A sampling phase, made of N iterations, to reduce the variance.

Figure 1. The many short-
chains regime. Running many
chains allows us to shorten the
sampling phase. With cross-
chain adaptation, we may also
reduce the length of the warmup
phase.

GPU-friendly samplers:
• Synchronize run times of Markov chains to work well on GPUs.
• Cross-chain adaptation: pool information between chains to tune the sampler (Figure 2).
• Examples: ChEES-HMC [1] and adaptive MALT [6].
• High performance implementation using TensorFlow Probability [3].

10 210 1100

Scaled squared bias
0

2500

5000

7500

10000

12500

15000

17500

20000

Nu
m

be
r o

f g
ra

di
en

ts
 p

er
 c

ha
in number of chains 2

number of chains 4
number of chains 8

Figure 2. Using more chains
and doing cross-chain adapta-
tion reduces the average num-
ber of gradient evaluations per
chain required to achieve a tar-
get bias. In this example, we
target an ill-conditioned Gaus-
sian using ChEES-HMC [1] over
1,000 iterations. With 2 chains, a
target bias below 10−2 cannot be
achieved in 1,000 iterations.

Limitation of R̂ and motivation for nR̂

Let θ(nm) be the nth iteration of the mth chain.

Definition of R̂:
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)2
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√
1 + B̂/Ŵ .

• Recommendation: check if R̂ ≤ 1.01 to assess convergence [8].
• Even for stationary chains, we still need long chains for R̂ to decay to 1.01 (Figure 3).

Proposition. Suppose the chains are stationary (i.e. the warmup length W → ∞). Then, if
the chains have a non-negative auto-correlation,

lim
W ,M→∞

R̂ ≥
√

1 + 1/ESS(1),

where M is the number of chains and ESS(1) is the effective sample size per chain.

Nested-R̂.
• Use the variance of the Monte Carlo estimator computed by a group of chains or superchain.
• Partition the Markov chains in to K superchains, each made of M subchains initialized at
the same point, θk0 .

• θ(nmk) is now the nth iteration in the mth subchain of the kth superchain.

nB̂ =
1
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• For stationary chains, nR̂ decays to 1.01 either for large N or large M (Figure 3).
• R̂ is a special case of nR̂ where each superchain only has one subchain (M = 1).

Analysis of nested-R̂
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Figure 3. R̂ and nR̂ on Banana problem. After warmup, a single iteration suffices to achieve
an ESS of 100, when running 512 chains. However, more than 1,000 iterations are required
for R̂ to decay to 1.01. With sufficient subchains, nR̂ immediately diagnoses convergence.

Asymptotic analysis.
• An important question is to understand which quantity R̂ (and nR̂) measure [7, 5].
• To analyze non-stationary chains we assume the chains have finite length, but consider the
asymptotic limit along the number of superchains, K →∞.

Theorem. The variance of the superchain Monte Carlo estimator observes the following
decomposition,

lim
K→∞

nB̂ = VarE
(
θ̄(··k) | θk0

)

︸ ︷︷ ︸
Non-stationary variance

+
1

M
EVar

(
θ̄(·mk) | θk0

)

︸ ︷︷ ︸
Persistent variance

.

Figure 4. Expected squared error decomposition for a superchain Monte Carlo estimator.

• We argue the main utility of nR̂ is to measure the non-stationary variance which can be
used as a “proxy clock” for the squared bias (Figure 4).

• In the Langevin diffusion approximation (Gaussian initialization and target), the non-
stationary variance and the squared bias both decay at a rate ∝ e−2T .

• The persistence variance can be linked to ESS and is a nuisance term. This nuisance term
is O(1/M) with our nesting strategy.

nR̂− 1

Figure 5. Application of nR̂ to a diversity of Bayesian models using KM = 128 chains, parti-
tioned into K = 8 superchains. Passed a certain threshold (nR̂ ≤ 1.01, yellow vertical line), the
squared error behaves as we would expect from stationary chains (0.9 coverage for stationary
error distribution given by horizontal dashed lines) and falls in the convergence quadrant.

Discussion. Our preprint [4] provides:
• Discussion on how to partition the Markov chains (i.e. choice of K).
• Preliminary experiments on early stopping of the warmup using nR̂.
• Examples of how our nesting strategy can be applied to other convergence diagnostics,
notably for multivariate chains [e.g 7, 5, 2].
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