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Abstract
Stan’s numerical algebraic solver can be used to solve systems of nonlinear algebraic equations with no

closed form solutions. One of its key applications in scientific and engineering fields is the computation of
equilibrium states (equivalently steady states). This case study illustrates the use of the algebraic solver
by applying it to a problem in pharmacometrics. In particular, I show the algebraic system we solve can
be quite complex and embed, for instance, numerical solutions to ordinary differential equations. The
code in R and Stan are provided, and a Bayesian model is fitted to simulated data.

This R markdown file runs with rstan 2.17.2.

1 Introduction

In many scientific and engineering fields, we need to compute the state of a system once an equilibrium has
been reached. One important case in pharmacometrics is that of a patient who has been under a treatment
for an extended period of time. What are the long-term behaviors of a desease, a drug, and its side effects?

We will consider treatments that undergo a cycle, since these are the ones that generate steady states.
A typical example is the intake of a drug at a regular time interval. At the beginning of the treatment,
the patient may experience changes from one cycle to the other, such as an overall increase in the drug
concentration in his or her blood.
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Drug Concentration in the Blood at the start of a treatment

(plot generated by ggplot2 [1])

However, once a steady state is reached, there is no evolution from one cycle to the other.
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Drug Concentration in the Blood at Steady State

(plot generated by ggplot2 [1])

Using our physical intuition, we may now formally define a steady state. Let τ be the period of a cycle (in
our example the inter-dose interval), and y(t) the function that describes the evolution of a system of interest
over time. A steady state is reached when:

y(t+ τ) = y(t)

A more careful definition accounts for noise in the data and states the above equation holds on average. Since
we are building generative models with Stan, we first focus on the determnistic features and assume the
above equality to be exact. We will add stochastic components when we formulate the posterior.

Our goal is to evaluate y(t0), the state at the beginning of a cycle. The brute force approach would be to
simulate the treatment, until a steady state is reached. A more elegant method is to solve the above algebraic
equation. This can be a formidable problem, especially when y is sophisticated. In particular, the equation
could be nonlinear and y could not have an analytical form.

2 Evolving the System over Time

In pharmacometrics y is often the vector solution of a system of ordinary differential equations (ODEs).

The above plotted data was simulated using a two compartment model with a first-order absorption from the
gut1, using the R package mrgsolve [3]. This model describes how the drug circulates in various compartments
of the human body, blood being one of them (or more precisely, part of one of them).

y is the vector solution to the following system of three differential equations:

y′gut = −kaygut

y′cent = kaygut −
(
CL

Vcent
+ Q

Vcent

)
ycent + Q

Vperi
yperi

y′peri = Q

Vcent
ycent − Q

Vperi
yperi

where

ygut : the drug mass in the gut (mg)
ycent : the drug mass in the central compartment (mg)
yperi : the drug mass in the peripheral compartment (mg)
ka : the rate constant at which the drug flows from the gut to the central compartment (h−1)
Q : the clearance at which the drug flows back and forth between the central and the peripheral compartment
(L/h)

1This is one of the models I discussed at the Stan Con 2017 [2].
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Figure 1: Two Compartment Model with a First-Order Absorption from the Gut

CL : the clearance at which the drug is cleared from the central compartment (L/h)
Vcent : the volume of the central compartment (L)
Vperi : the volume of the peripheral compartment (L)

This system has a closed form solution which involves exponential polynomials.

Solving this equation tells us how the system evolves over time given an initial condition, y0. This can be
thought of as the natural evolution of the system. What it fails to account for are exterior interventions such
as drug intakes. These need to be computed seperately. If a patient takes a drug orally, there will be a bolus
increase in the drug mass in the gut, which we compute by adding the drug amount m to y0. Schematically,
a cycle in our example corresponds to:

1. Start at an intial state: y(t−0 ).

2. Patient takes the drug. Add m to y0 and get y(t+0 ).

3. Evolve the system by solving the ODEs to get y(t+0 + τ).

4. Start over.

3 Solving Algebraic Equations

We need to solve y(t−0 ) = y(t+0 + τ).

The two compartment model is relatively simple. The ODE system has a closed form solution and the
steady state can also be computed analytically. Ideally, we would hand-code the solution, but I would like
to illustrate the use of algebra_solver, Stan’s function to solve nonlinear algebraic equations numerically.
This method, while slower, has a much broader application.

Many times y will indeed have no closed-form. It could for instance be the solution to a nonlinear ODE
system, which we may well generate by extending our model to describe, in addition to drug circulation,
desease progression and/or side-effects (see [2] for some examples). In such a case, we are forced to use a
numerical algebraic solver, mostly because of the nonlinearity of the resulting algebraic equation. If the
equations are linear, matrix operations will be the more efficient method.
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I’ll stick to the two compartment model because of its simplicity, and because the model is very fast, which
should encourage readers to try and run the code themselves.

3.1 Writing the Algebraic Equation in Stan

Any algebraic equation can be turned into a root-finding problem:

f(y) = 0

In our example:

y(t−0 ) − y(t+0 + τ) = 0

where we wish to solve for y(t−0 ), the state of the patient at the beginning of a cycle. Note y is a vector, each
element being the drug mass in a compartment. Our first task is to code the left-hand-side of this equation
in Stan. We do this inside the functions block:

vector f(vector y, vector theta, real[] x_r, int[] x_i) {
real ii = x_r[1]; // interdose interval (or tau)
real amt = x_r[2]; // dose amount
int cmt = x_i[1]; // compartment in which the drug is administered
int evid = 1;

// return the difference between the evolved and the initial state
return twoCptModel1(ii, y, theta, amt, cmt, evid) - y;

}

Just as for the ODE integrator, the function must observe a strict signature. The first argument must be
a vector and is the unknowns we wish to solve for. The parameters are passed in the vector theta, and
real and interger data arrays are passed respectively in x_r and x_i. Parameters and data can then be
“unwrapped” inside the function.

The function twoCptModel1 is the evolution operator. It is coded as the analytical solution to the above
ODEs, and in addition it computes discrete changes due to drug intake:

vector twoCptModel1(real dt, vector init, vector theta,
real amt, int cmt, int evid) {

real CL = theta[1];
real Q = theta[2];
real V1 = theta[3];
real V2 = theta[4];
real ka = theta[5];
real k10 = CL / V1;
real k12 = Q / V1;
real k21 = Q / V2;
real ksum = k10 + k12 + k21;
vector[3] alpha;
vector[3] a;
vector[3] x = rep_vector(0.0, 3);

alpha[1] = (ksum + sqrt(ksum * ksum - 4.0 * k10 * k21))/2.0;
alpha[2] = (ksum - sqrt(ksum * ksum - 4.0 * k10 * k21))/2.0;
alpha[3] = ka;

if(init[1] != 0.0){
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x[1] = init[1] * exp(-alpha[3] * dt);
a[1] = ka * (k21 - alpha[1]) / ((ka - alpha[1]) * (alpha[2] - alpha[1]));
a[2] = ka * (k21 - alpha[2]) / ((ka - alpha[2]) * (alpha[1] - alpha[2]));
a[3] = -(a[1] + a[2]);
x[2] = init[1] * sum(a .* exp(-alpha * dt));
a[1] = ka * k12 / ((ka - alpha[1]) * (alpha[2] - alpha[1]));
a[2] = ka * k12 / ((ka - alpha[2]) * (alpha[1] - alpha[2]));
a[3] = -(a[1] + a[2]);
x[3] = init[1] * sum(a .* exp(-alpha * dt));

}

if(init[2] != 0){
a[1] = (k21 - alpha[1]) / (alpha[2] - alpha[1]);
a[2] = (k21 - alpha[2]) / (alpha[1] - alpha[2]);
x[2] = x[2] + init[2] * sum(segment(a, 1, 2) .* exp(-segment(alpha, 1, 2) * dt));
a[1] = k12 / (alpha[2] - alpha[1]);
a[2] = -a[1];
x[3] = x[3] + init[2] * sum(segment(a, 1, 2) .* exp(-segment(alpha, 1, 2) * dt));

}

if(init[3] != 0){
a[1] = k21 / (alpha[2] - alpha[1]);
a[2] = -a[1];
x[2] = x[2] + init[3] * sum(segment(a, 1, 2) .* exp(-segment(alpha, 1, 2) * dt));
a[1] = (k10 + k12 - alpha[1]) / (alpha[2] - alpha[1]);
a[2] = (k10 + k12 - alpha[2]) / (alpha[1] - alpha[2]);
x[3] = x[3] + init[3] * sum(segment(a, 1, 2) .* exp(-segment(alpha, 1, 2) * dt));

}

if(evid == 1) x[cmt] = x[cmt] + amt;

return x;
}

3.2 Calling the Algebraic Solver

We can now call the algebraic solver:

y = algebra_solver(f, init_guess, theta, x_r, x_i);

where f is the function declared above. The second argument is an initial guess. theta, x_r, and x_i are the
parameters and data which get passed to f.

A good guess increases the speed of the solver and even determines, whether the solver converges or not. In
degenerate cases (i.e. when there is more than one solution), the guess can determine which solution the
solver returns. Here’s a simple example:

z1 = (y1 − 5)(y2 − 8)
z2 = (y2 − 5)(y1 − 8)

If the initial guess is yinit = (1, 10), the solver returns y∗ = (8, 8). If the initial guess is yinit = (1, 1), the
solver returns y∗ = (5, 5). In general, the solver looks for a solution in the “neighborhood” of the initial
guess, but what this neighborhood corresponds to is not always well defined, when different solutions have
comparable scales.

5



We can also control certain tuning parameters of the algebraic solver: the relative tolerance, the maximum
number of iterations, and the function tolerance (the latter measures how far from 0 f(y∗) is). See Stan’s
user manual, section 20 [3].

In our model, I use the drug mass during an intake in the cycle to scale the initial guess:

init_guess[1] = amt[1];
init_guess[2] = amt[1] * 0.5;
init_guess[3] = amt[1] * 0.35;

This is a rough guess but it works well. A better approach would be to compute the drug mass in the body at
the beginning of the treatment (after one cycle). Such a guess would be parameter dependent. Unfortunately,
Stan currently requires the initial guess to be a vector of data, which places severe restrictions. We plan to
remove this unnecessary requirement in Stan’s next release2.

The model library Torsten, a collection of Stan functions for pharmacometrics [5, 6] (version 0.83) implements
the above described method. The BUGS model library [7], Torsten’s predecessor for WinBUGS [8], does so
too and in addition improves the initial guess, by simulating multiple cycles, when the solver fails to converge.
This technique can be used in the Stan Math C++ library, though currently not in the Stan language.

In all these cases, we may say the guesses are “naive”, as we do not expect them to be spot on. For example,
the drug mass after one cycle clearly understimates the mass at steady state. These guesses may however
very well capture the scale of the solution, which should be enough the make the solver converge.

4 Stan model

The data we fit our model to is obtained from a simulated clincal trial. A patient has been under a treatment
for an extended period of time and has reached steady state. During the trial we monitor four cycles of the
treatment, by measuring the plasma drug concentration in the blood. The data is simulated using mrgsolve.
Note mrgsolve simulates a steady state by computing the regimen for an extended period of time, rather
than using an algebraic solver.

We wish to evaluate the parameters of the two compartment model, i.e. the coefficients in the ODE system
(CL, Q, V C, V P , and ka) and the standard deviation responsible for residual errors (σ).

4.1 R script to run the Stan model

modelName <- "SteadyState"

# Specify the variables for which you want history and density plots
parametersToPlot <- c("CL", "Q", "VC", "VP", "ka", "sigma")

# Additional variables to monitor
otherRVs <- c("cObsPred")

parameters <- c(parametersToPlot, otherRVs)
parametersToPlot <- c("lp__", parametersToPlot)

# initial estimates
init <- function() {

list(CL = exp(rnorm(1, log(10), 0.2)),
Q = exp(rnorm(1, log(20), 0.2)),
VC = exp(rnorm(1, log(70), 0.2)),

2see https://github.com/stan-dev/math/issues/651
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VP = exp(rnorm(1, log(70), 0.2)),
ka = exp(rnorm(1, log(1), 0.2)),
sigma = runif(1, 0.5, 2))

}

# The data is simulated with SteadyStateSimulations.R and saved in
# SteadyState.data.R. We'll read in the data into a list.
data <- read_rdump("SteadyState.data.R")

nChains <- 4
nPost <- 1000 # Number of post-burn-in samples per chain after thinning
nBurn <- 1000 # Number of burn-in samples per chain after thinning
nThin <- 1

nIter <- (nBurn + nPost) * nThin
nBurnin <- nBurn * nThin

fit <- stan(file = file.path(modelDir, paste(modelName, ".stan", sep = "")),
data = data,
pars = parameters,
iter = nIter,
warmup = nBurnin,
thin = nThin,
init = init,
chains = nChains,
cores = min(nChains, parallel::detectCores()))

dir.create(outDir)

## Warning in dir.create(outDir): '/Users/charlesm/Desktop/StanCon2018/model/
## SteadyState' already exists
save(fit, file = file.path(outDir, paste(modelName, "Fit.Rsave", sep = "")))

4.3 Diagnostics

We start with the trace and density plots:
mcmcHistory(fit, parametersToPlot)

## Joining, by = "parameter"
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mcmcDensity(fit, parametersToPlot, byChain = TRUE)

## Joining, by = "parameter"
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## NULL

All chains display the desired “fuzzy cartepillar” shape, which indicates low autocorellation and the density
plots overlap. This is strong evidence all chains have converged to a common posterior distribution.

Let’s take a look at the pairs plot. The pairs plot gives us a nice visual representation of correlation between
parameters in the posterior. It can also be used to visualize pathologies during the model fitting, such as
divergent transitions (indicated by red dots) or points where the maximum tree depth has been reached
(yellow dots). For more details, see the RStan manual on on pairs.stanfit [9].
pairs(fit, pars = parametersToPlot)
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No red or yellow dots. All looks good.

The results are summarized in the following table:
ptable <- parameterTable(fit, parametersToPlot)
ptable

## mean se_mean sd 2.5% 25%
## lp__ 65.7019572 0.0457479662 1.83974263 61.2276732 64.7345815
## CL 4.7626178 0.0021723373 0.12443634 4.5266385 4.6775942
## Q 8.0107238 0.0405489959 1.62215222 4.7554662 6.9290407
## VC 22.5765176 0.1298156416 4.68866049 12.6289149 19.6152436
## VP 127.6915287 1.2308571859 63.63068340 46.7889330 83.4791438
## ka 1.4426514 0.0112669973 0.41048733 0.7325323 1.1453007
## sigma 0.1424544 0.0003288461 0.01552679 0.1161060 0.1312575
## 50% 75% 97.5% n_eff Rhat
## lp__ 66.0473592 67.0588663 68.1448396 1617.225 1.0004003
## CL 4.7612551 4.8450759 5.0136173 3281.255 1.0005986
## Q 8.0407653 9.1123453 11.1806004 1600.380 1.0021023
## VC 22.9124519 25.9408490 30.6210437 1304.498 1.0027995
## VP 114.6826206 155.7989260 289.8225649 2672.501 0.9996507
## ka 1.4043252 1.7143634 2.3166737 1327.343 1.0023262
## sigma 0.1411216 0.1519403 0.1763881 2229.349 1.0010919

4.4 Posterior Predictive Checks

Using the generated quantities block, we generate data from our model which we can then compare to the
original data:
data <- data.frame(data$cObs, data$time[data$iObs])
data <- plyr::rename(data, c("data.cObs" = "cObs", "data.time.data.iObs." = "time"))
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pred <- as.data.frame(fit, pars = "cObsPred") %>%
gather(factor_key = TRUE) %>%
group_by(key) %>%
summarize(lb = quantile(value, probs = 0.05),

median = quantile(value, probs = 0.5),
ub = quantile(value, probs = 0.95)) %>%

bind_cols(data)

p1 <- ggplot(pred, aes(x = time, y = cObs))
p1 <- p1 + geom_point() +

labs(x = "time (h)", y = "plasma concentration (mg/L)") +
theme(text = element_text(size = 12), axis.text = element_text(size = 12),

legend.position = "none", strip.text = element_text(size = 8))
p1 + geom_line(aes(x = time, y = median)) +

geom_ribbon(aes(ymin = lb, ymax = ub), alpha = 0.25)
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The model fit and the data are in agreement.

5 Alternative Model Specification: Solving an ODE numerically inside an Alge-
braic Equation

To illustrate the applicability of the algebraic solver, let’s rewrite the model without using the analytical
solution to the two compartment model ODEs. Instead the ODE will be solved numerically. In practice, we
should priviledge analytical methods, but numerical techniques are much more generalizable and make for a
more pedagogical example.
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The ODE system is coded in Stan as followa:

real[] twoCptModelODE(real t,
real[] x,
real[] parms,
real[] x_r,
int[] x_i){

real CL = parms[1];
real Q = parms[2];
real V1 = parms[3];
real V2 = parms[4];
real ka = parms[5];

real k10 = CL / V1;
real k12 = Q / V1;
real k21 = Q / V2;

real y[3];

y[1] = -ka*x[1];
y[2] = ka*x[1] - (k10 + k12)*x[2] + k21*x[3];
y[3] = k12*x[2] - k21*x[3];

return y;
}

and the algebraic equation becomes:

vector f(vector y, vector theta, real[] x_r, int[] x_i) {
real amt = x_r[2];
int cmt = x_i[1];
real y_ii[3] = to_array_1d(y);

y_ii[cmt] = y_ii[cmt] + amt;
y_ii = integrate_ode_rk45(twoCptModelODE, y_ii, 0, rep_array(x_r[1], 1),

to_array_1d(theta), rep_array(0.0, 1),
rep_array(0, 1))[1];

// return the difference between evolved and initial state
return to_vector(y_ii) - y;

}

The task of evolving the system is now carried out by the integrator, rather than by the function twoCptModel1.
Notice the dose input gets computed before we call the numerical integrator.

In order to save time when knitting this file, I won’t do a full Bayesian analysis. Instead, I’ll do a determinisitic
test. That is, I’ll fix the parameters and make sure the data I simulate with Stan agrees with what I get from
mrgsolve. The parameter values are set to:

CL = 5L/h
Q = 8L/h

Vcent = 20L
Vperi = 70L
ka = 1.2h−1

σ ≈ 0
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Let’s first generate the data with Stan:
# Use fixed values for parameters (since we're doing a fixed parameter test)
init <- function () { list(CL = 5,

Q = 8,
VC = 20,
VP = 70,
ka = 1.2,
sigma = 0.00001)

}

data <- read_rdump("SteadyStateODE.data.R")

################################################################################################
## run Stan
nChains <- 1
nPost <- 1 ## Number of post-burn-in samples per chain after thinning
nBurn <- 0 ## Number of burn-in samples per chain after thinning
nThin <- 1

nIter <- nPost * nThin
nBurnin <- nBurn * nThin

fit <- stan(file = file.path(modelDir, paste(modelName, ".stan", sep = "")),
algorithm = "Fixed_param",
data = data,
pars = parameters,
iter = nIter,
warmup = nBurnin,
thin = nThin,
init = init,
chains = nChains,
cores = min(nChains, parallel::detectCores()))

##
## SAMPLING FOR MODEL 'SteadyStateODE' NOW (CHAIN 1).
## Iteration: 1 / 1 [100%] (Sampling)
##
## Elapsed Time: 0 seconds (Warm-up)
## 0.002593 seconds (Sampling)
## 0.002593 seconds (Total)
dir.create(outDir)

## Warning in dir.create(outDir): '/Users/charlesm/Desktop/StanCon2018/model/
## SteadyStateODE' already exists
save(fit, file = file.path(outDir, paste(modelName, "Fit.Rsave", sep = "")))

Next, we compare it to what we produced with mrgsolve:
data <- data.frame(data$cObs, data$time[data$iObs])
data <- plyr::rename(data, c("data.cObs" = "cObs", "data.time.data.iObs." = "time"))

pred <- as.data.frame(fit, pars = "cObsPred") %>%
gather(factor_key = TRUE) %>%
group_by(key) %>%
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summarize(lb = quantile(value, probs = 0.05),
median = quantile(value, probs = 0.5),
ub = quantile(value, probs = 0.95)) %>%

bind_cols(data)

p1 <- ggplot(pred, aes(x = time, y = cObs))
p1 <- p1 + geom_point() +

labs(x = "time (h)", y = "plasma concentration (mg/L)") +
theme(text = element_text(size = 12), axis.text = element_text(size = 12),

legend.position = "none", strip.text = element_text(size = 8))
p1 + geom_line(aes(x = time, y = median)) +

geom_ribbon(aes(ymin = lb, ymax = ub), alpha = 0.25)

15

20

25

30

0 10 20 30 40
time (h)

pl
as

m
a 

co
nc

en
tr

at
io

n 
(m

g/
L)

The data simulated with Stan agrees with that from mrgsolve, demonstrating the algebraic solver’s ability to
find the root of a relatively complicated function.

Readers familiar with some of the algorithms Stan uses under the hood will also appreciate the fact the
solver not only produces a solution but also the partial derivatives of the solution with respect to auxiliary
parameters. Moreover, automatic differentiation allows us to combine the Jacobian matrices of complex
expressions (such as the numerical solutions to algebraic and differential equations) to compute the gradient
of the log posterior.
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